論文の概要: Sparse Points to Dense Clouds: Enhancing 3D Detection with Limited LiDAR Data
- arxiv url: http://arxiv.org/abs/2404.06715v1
- Date: Wed, 10 Apr 2024 03:54:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-11 15:39:25.674763
- Title: Sparse Points to Dense Clouds: Enhancing 3D Detection with Limited LiDAR Data
- Title(参考訳): 密度雲のスパースポイント:LiDARデータによる3次元検出の強化
- Authors: Aakash Kumar, Chen Chen, Ajmal Mian, Neils Lobo, Mubarak Shah,
- Abstract要約: 単分子と点雲に基づく3次元検出の利点を組み合わせたバランスの取れたアプローチを提案する。
本手法では,低コストで低解像度のセンサから得られる3Dポイントを少数必要としている。
3次元検出の精度は最先端の単分子検出法と比較して20%向上する。
- 参考スコア(独自算出の注目度): 68.18735997052265
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: 3D detection is a critical task that enables machines to identify and locate objects in three-dimensional space. It has a broad range of applications in several fields, including autonomous driving, robotics and augmented reality. Monocular 3D detection is attractive as it requires only a single camera, however, it lacks the accuracy and robustness required for real world applications. High resolution LiDAR on the other hand, can be expensive and lead to interference problems in heavy traffic given their active transmissions. We propose a balanced approach that combines the advantages of monocular and point cloud-based 3D detection. Our method requires only a small number of 3D points, that can be obtained from a low-cost, low-resolution sensor. Specifically, we use only 512 points, which is just 1% of a full LiDAR frame in the KITTI dataset. Our method reconstructs a complete 3D point cloud from this limited 3D information combined with a single image. The reconstructed 3D point cloud and corresponding image can be used by any multi-modal off-the-shelf detector for 3D object detection. By using the proposed network architecture with an off-the-shelf multi-modal 3D detector, the accuracy of 3D detection improves by 20% compared to the state-of-the-art monocular detection methods and 6% to 9% compare to the baseline multi-modal methods on KITTI and JackRabbot datasets.
- Abstract(参考訳): 3D検出は、機械が3次元空間内の物体を識別し、発見できるようにする重要なタスクである。
自律運転、ロボット工学、拡張現実など、さまざまな分野の幅広い応用がある。
モノクロ3D検出は、1台のカメラだけを必要とするため魅力的だが、現実世界のアプリケーションに必要な正確さと堅牢さは欠如している。
一方、高解像度のLiDARは高価であり、アクティブトランスミッションを考えると、大量のトラフィックの干渉問題を引き起こす可能性がある。
単分子と点雲に基づく3次元検出の利点を組み合わせたバランスの取れたアプローチを提案する。
本手法では,低コストで低解像度のセンサから得られる3Dポイントを少数必要としている。
具体的には、512ポイントしか使用していません。これは、KITTIデータセットの完全なLiDARフレームの1%に過ぎません。
本手法は,この制限された3次元情報と1枚の画像を組み合わせた完全3次元点雲を再構成する。
再構成された3D点雲と対応する画像は、任意のマルチモーダルオフザシェルフ検出器によって3Dオブジェクト検出に利用することができる。
既製のマルチモーダル3D検出器を用いたネットワークアーキテクチャにより,最先端モノクル検出法と比較して3D検出の精度は20%向上し,KITTIおよびJackRabbotデータセットのベースラインマルチモーダル法と比較して6%から9%向上した。
関連論文リスト
- Multi-Modal 3D Object Detection by Box Matching [109.43430123791684]
マルチモーダル3次元検出のためのボックスマッチング(FBMNet)による新しいフュージョンネットワークを提案する。
3Dオブジェクトと2Dオブジェクトの提案を学習することで、ROI特徴を組み合わせることで、検出のための融合を効果的に行うことができる。
論文 参考訳(メタデータ) (2023-05-12T18:08:51Z) - 3D Small Object Detection with Dynamic Spatial Pruning [62.72638845817799]
本稿では,3次元小物体検出のための効率的な特徴解析手法を提案する。
空間分解能の高いDSPDet3Dというマルチレベル3次元検出器を提案する。
ほぼ全ての物体を検知しながら、4500k以上のポイントからなる建物全体を直接処理するには2秒もかからない。
論文 参考訳(メタデータ) (2023-05-05T17:57:04Z) - SM3D: Simultaneous Monocular Mapping and 3D Detection [1.2183405753834562]
本稿では,同時マッピングと3次元検出のための,革新的で効率的なマルチタスク深層学習フレームワーク(SM3D)を提案する。
両モジュールのエンドツーエンドのトレーニングにより、提案したマッピングと3D検出は、最先端のベースラインを10.0%、精度13.2%で上回っている。
我々の単分子マルチタスクSM3Dは純粋なステレオ3D検出器の2倍以上の速度で、2つのモジュールを別々に使用するより18.3%速い。
論文 参考訳(メタデータ) (2021-11-24T17:23:37Z) - PLUME: Efficient 3D Object Detection from Stereo Images [95.31278688164646]
既存の手法では、2つのステップでこの問題に対処する: 第一深度推定を行い、その深さ推定から擬似LiDAR点雲表現を計算し、3次元空間で物体検出を行う。
この2つのタスクを同一のメトリック空間で統一するモデルを提案する。
提案手法は,既存の手法と比較して推定時間を大幅に削減し,挑戦的なKITTIベンチマークの最先端性能を実現する。
論文 参考訳(メタデータ) (2021-01-17T05:11:38Z) - RoIFusion: 3D Object Detection from LiDAR and Vision [7.878027048763662]
本稿では,3次元関心領域(RoI)の集合を点雲から対応する画像の2次元ロIに投影することで,新しい融合アルゴリズムを提案する。
提案手法は,KITTI 3Dオブジェクト検出課題ベンチマークにおける最先端性能を実現する。
論文 参考訳(メタデータ) (2020-09-09T20:23:27Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
モノクロ3次元物体検出は、2次元入力画像から物体の位置と特性を抽出することを目的としている。
従来のアプローチでは、空間から3D境界ボックスをサンプリングし、対象オブジェクトと各オブジェクトの関係を推定するが、有効サンプルの確率は3D空間で比較的小さい。
我々は,まず最初の予測から始めて,各ステップで1つの3dパラメータだけを変えて,基礎的真理に向けて徐々に洗練することを提案する。
これは、いくつかのステップの後に報酬を得るポリシーを設計する必要があるため、最適化するために強化学習を採用します。
論文 参考訳(メタデータ) (2020-08-31T17:10:48Z) - Single-Shot 3D Detection of Vehicles from Monocular RGB Images via
Geometry Constrained Keypoints in Real-Time [6.82446891805815]
単眼RGB画像における車両検出のための新しい3次元単発物体検出法を提案する。
提案手法は,3次元空間への2次元検出を付加回帰および分類パラメータの予測により引き上げる。
KITTI 3D Object Detection と新しい nuScenes Object Detection ベンチマークを用いて,自律走行のための異なるデータセットに対するアプローチを検証し,その評価を行った。
論文 参考訳(メタデータ) (2020-06-23T15:10:19Z) - SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint
Estimation [3.1542695050861544]
3Dの向きとオブジェクトの変換を推定することは、インフラストラクチャレスの自律走行と運転に不可欠である。
SMOKEと呼ばれる新しい3次元オブジェクト検出手法を提案する。
構造的単純さにもかかわらず、提案するSMOKEネットワークは、KITTIデータセット上の既存のモノクル3D検出方法よりも優れている。
論文 参考訳(メタデータ) (2020-02-24T08:15:36Z) - DSGN: Deep Stereo Geometry Network for 3D Object Detection [79.16397166985706]
画像ベースとLiDARベースの3Dオブジェクト検出器の間には大きなパフォーマンスギャップがある。
我々の手法であるDeep Stereo Geometry Network (DSGN)は,このギャップを著しく低減する。
初めて、シンプルで効果的な1段ステレオベースの3D検出パイプラインを提供する。
論文 参考訳(メタデータ) (2020-01-10T11:44:37Z) - RTM3D: Real-time Monocular 3D Detection from Object Keypoints for
Autonomous Driving [26.216609821525676]
最も成功した3D検出器は、3Dバウンディングボックスから2Dボックスへの投射制約を重要な構成要素としている。
画像空間における3次元境界ボックスの9つの視点キーポイントを予測し、3次元空間における3次元視点と2次元視点の幾何学的関係を利用して、次元、位置、方向を復元する。
提案手法は,KITTIベンチマークの最先端性能を達成しつつ,モノクロ画像の3次元検出を行う最初のリアルタイムシステムである。
論文 参考訳(メタデータ) (2020-01-10T08:29:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。