Quantum Fluctuations and Coherence of a Molecular Polariton Condensate
- URL: http://arxiv.org/abs/2204.13528v1
- Date: Thu, 28 Apr 2022 14:27:05 GMT
- Title: Quantum Fluctuations and Coherence of a Molecular Polariton Condensate
- Authors: Zhedong Zhang, Shixuan Zhao, Dangyuan Lei
- Abstract summary: A full quantum theory is developed for an exciton polariton condensate.
The polariton nonlinearity causing fast relaxation correlated with the pump so as to yield the condensation at threshold.
The results signify the role of dark states for polariton fluctuations, and lead to a nonclassical counting statistics of emitted photons.
- Score: 0.5801044612920816
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A full quantum theory beyond the mean-field regime is developed for an
exciton polariton condensate, to gain a complete understanding of quantum
fluctuations. We find analytical solution for the polariton density matrix,
showing the polariton nonlinearity causing fast relaxation correlated with the
pump so as to yield the condensation at threshold. Increasing the pump
intensity, a nonequilibrium phase transition towards the condensation of lower
polaritons emerges, with a statistics transiting from a thermal, through a
super-Poissonian and to a nonclassical distribution beyond the understanding at
the level of off-diagonal long-range order. The results signify the role of
dark states for polariton fluctuations, and lead to a nonclassical counting
statistics of emitted photons, which elaborates the role of the key parameters,
e.g., pump, detuning and temperature.
Related papers
- Polarization entanglement and qubit error rate dependence on the exciton-phonon coupling in self-assembled quantum dots [0.0]
We theoretically investigate the polarization entangled photon pairs emitted by a quantum-dot radiative cascade embedded in a micropillar cavity.
We show that the phonon-coupling introduces the one-photon and two-photon incoherent processes, as well as the cross-coupling between the two exciton states.
It is shown that the phonon-mediated coupling along with the ac-Stark shift and multiphoton emission significantly degrade the entanglement at higher temperatures.
arXiv Detail & Related papers (2025-02-05T17:52:43Z) - Analysis of exciton-polariton condensation under different pumping schemes for 1D and 2D microcavities including the effect of strong correlation between polaritons [0.0]
We simulate exciton-polariton condensation using the finite-difference and 4th order Runge-Kutta methods.
This is done for coherent, near-resonant pumping as well as homogeneous, incoherent, non-resonant pumping.
arXiv Detail & Related papers (2025-01-06T12:05:01Z) - Quantum optical scattering by macroscopic lossy objects: A general approach [55.2480439325792]
We develop a general approach to describe the scattering of quantum light by a lossy macroscopic object placed in vacuum.
We exploit the input-output relation to connect the output state of the field to the input one.
We analyze the impact of the classical transmission and absorption dyadics on the transitions from ingoing to outgoing s-polariton.
arXiv Detail & Related papers (2024-11-27T17:44:29Z) - Fermionization and collective excitations of 1D polariton lattices [0.0]
We show that the hallmarks of correlation and fermionization in a one-dimensional exciton-polaritons gas can be observed with state-of-the-art technology.
Our work encourages future experiments aimed at observing, for the first time, strongly correlated exciton-polariton physics.
arXiv Detail & Related papers (2024-05-03T17:09:12Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Quantum thermodynamics of periodically driven polaritonic systems [0.0]
We investigate the energy distribution and quantum thermodynamics in periodically driven polaritonic systems at room temperature.
We compute the thermodynamic performance during harmonic modulation and demonstrate that maximum efficiency occurs at resonance.
arXiv Detail & Related papers (2022-07-03T04:32:11Z) - In-Gap Band Formation in a Periodically Driven Charge Density Wave
Insulator [68.8204255655161]
Periodically driven quantum many-body systems host unconventional behavior not realized at equilibrium.
We investigate such a setup for strongly interacting spinless fermions on a chain, which at zero temperature and strong interactions form a charge density wave insulator.
arXiv Detail & Related papers (2022-05-19T13:28:47Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
We consider an ensemble of Alkali atoms that are continuously optically pumped and probed.
Due to the collective scattering of photons at large optical depth, the steady state of atoms does not correspond to an uncorrelated tensor-product state.
We find and characterize regimes of Raman lasing, akin to the model of a superradiant laser.
arXiv Detail & Related papers (2022-05-10T06:54:54Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Entanglement robustness to excitonic spin precession in a quantum dot [43.55994393060723]
A semiconductor quantum dot (QD) is an attractive resource to generate polarization-entangled photon pairs.
We study the excitonic spin precession (flip-flop) in a family of QDs with different excitonic fine-structure splitting (FSS)
Our results reveal that coherent processes leave the time post-selected entanglement of QDs unaffected while changing the eigenstates of the system.
arXiv Detail & Related papers (2020-01-31T13:50:51Z) - Entanglement-spectrum characterization of ground-state nonanalyticities
in coupled excitation-phonon models [0.0]
Small-polaron transitions are analyzed through the prism of the entanglement spectrum of the excitation-phonon system.
The behavior of the entanglement entropy in the vicinity of the critical excitation-phonon coupling strength chiefly originates from one specific entanglement-spectrum eigenvalue.
arXiv Detail & Related papers (2020-01-30T08:41:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.