Quantum thermodynamics of periodically driven polaritonic systems
- URL: http://arxiv.org/abs/2207.00953v2
- Date: Sun, 8 Jan 2023 08:08:01 GMT
- Title: Quantum thermodynamics of periodically driven polaritonic systems
- Authors: Maicol A. Ochoa
- Abstract summary: We investigate the energy distribution and quantum thermodynamics in periodically driven polaritonic systems at room temperature.
We compute the thermodynamic performance during harmonic modulation and demonstrate that maximum efficiency occurs at resonance.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the energy distribution and quantum thermodynamics in
periodically driven polaritonic systems in the stationary state at room
temperature. Specifically, we consider an exciton strongly coupled to a
harmonic oscillator and quantify the energy reorganization between these two
systems and their interaction as a function of coupling strength, driving
force, and detuning. After deriving the quantum master equation for the
polariton density matrix with weak environment interactions, we obtain the
dissipative time propagator and the long-time evolution of an equilibrium
initial state. This approach provides direct access to the stationary state and
overcomes the difficulties found in the numerical evolution of weakly damped
quantum systems near resonance, also providing maps on the polariton lineshape.
Then, we compute the thermodynamic performance during harmonic modulation and
demonstrate that maximum efficiency occurs at resonance. We also provide an
expression for the irreversible heat rate and numerically demonstrate that this
agrees with the thermodynamic laws.
Related papers
- Thermodynamics of adiabatic quantum pumping in quantum dots [50.24983453990065]
We consider adiabatic quantum pumping through a resonant level model, a single-level quantum dot connected to two fermionic leads.
We develop a self-contained thermodynamic description of this model accounting for the variation of the energy level of the dot and the tunnelling rates with the thermal baths.
arXiv Detail & Related papers (2023-06-14T16:29:18Z) - Nonequilibrium thermodynamics and power generation in open quantum
optomechanical systems [0.0]
We present a consistent thermodynamic description of open quantum cavity-atom systems.
Our approach takes advantage of their nonequilibrium nature and arrives at an energetic balance.
We discuss power generation, energy-conversion efficiency, and emergence of metastable behavior in both limits.
arXiv Detail & Related papers (2022-12-20T12:05:43Z) - Emergent pair localization in a many-body quantum spin system [0.0]
Generically, non-integrable quantum systems are expected to thermalize as they comply with the Eigenstate Thermalization Hypothesis.
In the presence of strong disorder, the dynamics can possibly slow down to a degree that systems fail to thermalize on experimentally accessible timescales.
We study an ensemble of Heisenberg spins with a tunable distribution of random coupling strengths realized by a Rydberg quantum simulator.
arXiv Detail & Related papers (2022-07-28T16:31:18Z) - Nonperturbative renormalization of quantum thermodynamics from weak to
strong couplings [2.542198147027801]
By solving the exact master equation of open quantum systems, we formulate the quantum thermodynamics from weak to strong couplings.
We find that the exact solution of the reduced density matrix of these systems approaches a Gibbs-type state in the steady-state limit for both the weak and strong system-reservoir coupling strengths.
arXiv Detail & Related papers (2022-05-17T06:25:03Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - Relating Heat and Entanglement in Strong Coupling Thermodynamics [0.0]
We develop a new approach to study thermodynamics in the strong coupling regime.
We apply the method to calculate the time-dependent thermodynamic properties of a system and an environment.
The results indicate that the transient imbalance between heat dissipated and heat absorbed is responsible for the generation of system-environment entanglement.
arXiv Detail & Related papers (2021-04-13T05:36:21Z) - Possibility of the total thermodynamic entropy production rate of a
finite-sized isolated quantum system to be negative for the
Gorini-Kossakowski-Sudarshan-Lindblad-type Markovian dynamics of its
subsystem [0.0]
We investigate a total thermodynamic entropy production rate of an isolated quantum system.
Even when the dynamics of the system is well approximated by the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL)-type Markovian master equation, the total entropy production rate can be negative.
arXiv Detail & Related papers (2021-03-09T09:11:45Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Out-of-equilibrium quantum thermodynamics in the Bloch sphere:
temperature and internal entropy production [68.8204255655161]
An explicit expression for the temperature of an open two-level quantum system is obtained.
This temperature coincides with the environment temperature if the system reaches thermal equilibrium with a heat reservoir.
We show that within this theoretical framework the total entropy production can be partitioned into two contributions.
arXiv Detail & Related papers (2020-04-09T23:06:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.