論文の概要: Predicting Sleeping Quality using Convolutional Neural Networks
- arxiv url: http://arxiv.org/abs/2204.13584v1
- Date: Sun, 24 Apr 2022 21:48:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-30 08:23:03.433608
- Title: Predicting Sleeping Quality using Convolutional Neural Networks
- Title(参考訳): 畳み込みニューラルネットワークによる睡眠の質予測
- Authors: Vidya Rohini Konanur Sathish, Wai Lok Woo, Edmond S. L. Ho
- Abstract要約: 本稿では,分類性能を向上させる畳み込みニューラルネットワーク(CNN)アーキテクチャを提案する。
従来の機械学習手法を含む様々な手法から分類性能をベンチマークする。
精度、感度、特異性、精度、リコール、Fスコアが報告され、研究をシミュレートするためのベースラインとして機能する。
- 参考スコア(独自算出の注目度): 6.236890292833385
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Identifying sleep stages and patterns is an essential part of diagnosing and
treating sleep disorders. With the advancement of smart technologies, sensor
data related to sleeping patterns can be captured easily. In this paper, we
propose a Convolution Neural Network (CNN) architecture that improves the
classification performance. In particular, we benchmark the classification
performance from different methods, including traditional machine learning
methods such as Logistic Regression (LR), Decision Trees (DT), k-Nearest
Neighbour (k-NN), Naive Bayes (NB) and Support Vector Machine (SVM), on 3
publicly available sleep datasets. The accuracy, sensitivity, specificity,
precision, recall, and F-score are reported and will serve as a baseline to
simulate the research in this direction in the future.
- Abstract(参考訳): 睡眠ステージとパターンの同定は、睡眠障害の診断と治療に不可欠である。
スマートテクノロジーの進歩により、睡眠パターンに関連するセンサデータは簡単にキャプチャできる。
本稿では,分類性能を向上させる畳み込みニューラルネットワーク(CNN)アーキテクチャを提案する。
特に、ロジスティック回帰(LR)、決定木(DT)、k-Nearest Neighbour(k-NN)、Naive Bayes(NB)、Support Vector Machine(SVM)といった従来の機械学習手法の分類性能を3つの公開睡眠データセット上でベンチマークする。
精度、感度、特異性、精度、リコール、Fスコアが報告され、将来この方向の研究をシミュレートするためのベースラインとして機能する。
関連論文リスト
- Annotating sleep states in children from wrist-worn accelerometer data
using Machine Learning [4.506099292980221]
本稿では,サポートベクトル,ブースティング,アンサンブル手法,LSTMやリージョンベースのCNNなど,さまざまな機械学習(ML)技術を用いて加速度センサデータをモデル化することを提案する。
その後,イベント検出平均精度(EDAP)スコア(IOU測定値と類似)を用いてこれらの手法を評価し,最終的に予測能力とモデル性能を比較することを目的とする。
論文 参考訳(メタデータ) (2023-12-09T09:10:39Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - SleepEGAN: A GAN-enhanced Ensemble Deep Learning Model for Imbalanced
Classification of Sleep Stages [4.649202082648198]
本研究では,睡眠段階の非バランスな分類のために,GAN(Generative Adversarial Network)を用いたアンサンブル深層学習モデルであるSleepEGANを開発した。
提案手法は,3つの睡眠データセットを用いた既存手法と比較して,分類精度を向上できることを示す。
論文 参考訳(メタデータ) (2023-07-04T01:56:00Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
我々は、CMMN(Convolutional Monge Mapping Normalization)と呼ばれる新しい手法を提案する。
CMMNは、そのパワースペクトル密度(PSD)をトレーニングデータに基づいて推定されるワッサーシュタインバリセンタに適応させるために、信号をフィルタリングする。
睡眠脳波データに関する数値実験により、CMMNはニューラルネットワークアーキテクチャから独立して、顕著で一貫したパフォーマンス向上をもたらすことが示された。
論文 参考訳(メタデータ) (2023-05-30T08:24:01Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
連続時間自己回帰リカレントニューラルネットワーク(Continuous Time Autoregressive Recurrent Neural Network, CTRNN)は、不規則な観測を考慮に入れたディープラーニングモデルである。
重篤なケア環境下での血糖値の確率予測へのこれらのモデルの適用を実証する。
論文 参考訳(メタデータ) (2023-04-14T09:39:06Z) - Sleep Model -- A Sequence Model for Predicting the Next Sleep Stage [18.059360820527687]
単チャンネル脳波(EEG)、脳電図(EOG)、筋電図(EMG)、心電図(ECG)などの単純なセンサーを用いた睡眠段階分類が注目されている。
本研究では、次の睡眠段階を予測する睡眠モデルを提案し、睡眠分類精度を向上させるために使用した。
論文 参考訳(メタデータ) (2023-02-17T07:37:54Z) - Neural Attentive Circuits [93.95502541529115]
我々は、NAC(Neural Attentive Circuits)と呼ばれる汎用的でモジュラーなニューラルアーキテクチャを導入する。
NACは、ドメイン知識を使わずに、ニューラルネットワークモジュールのパラメータ化と疎結合を学習する。
NACは推論時に8倍のスピードアップを達成するが、性能は3%以下である。
論文 参考訳(メタデータ) (2022-10-14T18:00:07Z) - Learning Signal Temporal Logic through Neural Network for Interpretable
Classification [13.829082181692872]
本稿では時系列行動の分類のための説明可能なニューラルネットワーク・シンボリック・フレームワークを提案する。
提案手法の計算効率, コンパクト性, 解釈可能性について, シナリオの駆動と海軍の監視事例研究を通じて実証する。
論文 参考訳(メタデータ) (2022-10-04T21:11:54Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
機械学習(ML)と人工知能(AI)はITシステムの運用とメンテナンスに適用される。
1つの方向は、修復自動化を可能にするために、繰り返し発生する異常タイプを認識することである。
与えられたデータの次元変化に不変な手法を提案する。
論文 参考訳(メタデータ) (2021-02-25T14:24:49Z) - Automatic detection of microsleep episodes with deep learning [55.41644538483948]
15秒未満の睡眠の短い断片は、マイクロスリープエピソード(MSEs)として定義される
覚醒検査(MWT)の維持は、警戒を評価するために臨床現場でしばしば用いられる。
MSEは、MSEを定義する確立された評価基準が欠如しているため、ほとんど考慮されていない。
入力として生の脳波とEOGデータに基づいて機械学習を用いてMSEを自動的に検出することを目的とした。
論文 参考訳(メタデータ) (2020-09-07T11:38:40Z) - Automate Obstructive Sleep Apnea Diagnosis Using Convolutional Neural
Networks [4.882119124419393]
本稿では,1次元畳み込み層とFCN層を有するCNNアーキテクチャについて述べる。
提案した1次元CNNモデルはPSG信号を手動で前処理することなく優れた分類結果が得られる。
論文 参考訳(メタデータ) (2020-06-13T15:35:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。