論文の概要: A Close Look into Human Activity Recognition Models using Deep Learning
- arxiv url: http://arxiv.org/abs/2204.13589v1
- Date: Tue, 26 Apr 2022 19:43:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-30 07:39:53.350234
- Title: A Close Look into Human Activity Recognition Models using Deep Learning
- Title(参考訳): 深層学習を用いた人間行動認識モデルの検討
- Authors: Wei Zhong Tee, Rushit Dave, Naeem Seliya, Mounika Vanamala
- Abstract要約: 本稿では,ディープラーニングアーキテクチャに基づく最先端の人間活動認識モデルについて検討する。
この分析は、モデルがどのように実装され、その効果と、それが直面する潜在的な制限を最大化するかを概説している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human activity recognition using deep learning techniques has become
increasing popular because of its high effectivity with recognizing complex
tasks, as well as being relatively low in costs compared to more traditional
machine learning techniques. This paper surveys some state-of-the-art human
activity recognition models that are based on deep learning architecture and
has layers containing Convolution Neural Networks (CNN), Long Short-Term Memory
(LSTM), or a mix of more than one type for a hybrid system. The analysis
outlines how the models are implemented to maximize its effectivity and some of
the potential limitations it faces.
- Abstract(参考訳): 深層学習技術を用いたヒューマンアクティビティ認識は、複雑なタスクの認識に効果が高いだけでなく、従来の機械学習技術に比べてコストが比較的低いため、人気が高まっている。
本稿では,CNN(Convolution Neural Networks),LSTM(Long Short-Term Memory),ハイブリッドシステムのための複数のタイプの混合を含む,ディープラーニングアーキテクチャに基づく,最先端の人間の活動認識モデルについて検討する。
この分析は、モデルがどのように実装され、その効果と、それが直面する潜在的な制限を最大化するかを概説している。
関連論文リスト
- Towards Scalable and Versatile Weight Space Learning [51.78426981947659]
本稿では,重み空間学習におけるSANEアプローチを紹介する。
ニューラルネットワーク重みのサブセットの逐次処理に向けて,超表現の概念を拡張した。
論文 参考訳(メタデータ) (2024-06-14T13:12:07Z) - CQural: A Novel CNN based Hybrid Architecture for Quantum Continual
Machine Learning [0.0]
本研究では,新しい古典量子ニューラルネットを用いた連続学習において,破滅的な忘れを回避できることが示唆された。
また、モデルがこれらの説明でトレーニングされている場合、より良いパフォーマンスを与え、決定境界から遠く離れた特定の特徴を学ぶ傾向があります。
論文 参考訳(メタデータ) (2023-05-16T18:19:12Z) - Stop overkilling simple tasks with black-box models and use transparent
models instead [57.42190785269343]
ディープラーニングアプローチは、生データから自律的に機能を抽出することができる。
これにより、機能エンジニアリングプロセスをバイパスすることができる。
ディープラーニング戦略は、しばしば精度で従来のモデルより優れている。
論文 参考訳(メタデータ) (2023-02-06T14:28:49Z) - From Actions to Events: A Transfer Learning Approach Using Improved Deep
Belief Networks [1.0554048699217669]
本稿では,エネルギーモデルを用いた行動認識からイベント認識への知識マッピング手法を提案する。
このようなモデルはすべてのフレームを同時に処理し、学習プロセスを通じて空間的および時間的情報を運ぶことができる。
論文 参考訳(メタデータ) (2022-11-30T14:47:10Z) - Interpretability of an Interaction Network for identifying $H
\rightarrow b\bar{b}$ jets [4.553120911976256]
近年、ディープニューラルネットワークに基づくAIモデルは、これらのアプリケーションの多くで人気が高まっている。
我々は、高揚した$Hto bbarb$ jetを識別するために設計されたインタラクションネットワーク(IN)モデルを調べることで、AIモデルの解釈可能性を検討する。
さらに、INモデル内の隠れレイヤの活動を、ニューラルアクティベーションパターン(NAP)ダイアグラムとして記述する。
論文 参考訳(メタデータ) (2022-11-23T08:38:52Z) - Human Activity Recognition Using Cascaded Dual Attention CNN and
Bi-Directional GRU Framework [3.3721926640077795]
視覚に基づく人間の活動認識は、ビデオ分析領域において重要な研究領域の1つとして現れてきた。
本稿では,人間の行動認識における深部識別的空間的特徴と時間的特徴を利用した,計算的に効率的だが汎用的な空間時空間カスケードフレームワークを提案する。
提案手法は, 従来の動作認識手法と比較して, フレーム毎秒最大167倍の性能向上を実現している。
論文 参考訳(メタデータ) (2022-08-09T20:34:42Z) - CogNGen: Constructing the Kernel of a Hyperdimensional Predictive
Processing Cognitive Architecture [79.07468367923619]
神経生物学的に妥当な2つの計算モデルを組み合わせた新しい認知アーキテクチャを提案する。
我々は、現代の機械学習技術の力を持つ認知アーキテクチャを開発することを目指している。
論文 参考訳(メタデータ) (2022-03-31T04:44:28Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Towards a Predictive Processing Implementation of the Common Model of
Cognition [79.63867412771461]
本稿では,ニューラル生成符号化とホログラフィック連想記憶に基づく認知モデルの実装について述べる。
提案システムは,多様なタスクから継続的に学習し,大規模に人的パフォーマンスをモデル化するエージェントを開発するための基盤となる。
論文 参考訳(メタデータ) (2021-05-15T22:55:23Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z) - Attention-Based Deep Learning Framework for Human Activity Recognition
with User Adaptation [5.629161809575013]
センサに基づく人間活動認識(HAR)は、センサ生成時系列データに基づいて人の行動を予測する必要がある。
純粋に注意に基づくメカニズムに基づく新しいディープラーニングフレームワーク、algnameを提案する。
提案した注目に基づくアーキテクチャは,従来のアプローチよりもはるかに強力であることを示す。
論文 参考訳(メタデータ) (2020-06-06T09:26:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。