Propagation of errors and quantitative quantum simulation with quantum
advantage
- URL: http://arxiv.org/abs/2204.13644v1
- Date: Thu, 28 Apr 2022 17:05:51 GMT
- Title: Propagation of errors and quantitative quantum simulation with quantum
advantage
- Authors: S. Flannigan, N. Pearson, G. H. Low, A. Buyskikh, I. Bloch, P. Zoller,
M. Troyer, A. J. Daley
- Abstract summary: Many-body quench dynamics is one of the most promising candidates for early practical quantum advantage.
We analyse the requirements for quantitatively reliable quantum simulation beyond the capabilities of existing classical methods.
We conclude for models that are directly implementable that regimes of practical quantum advantage are attained in current experiments with analogue simulators.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid development in hardware for quantum computing and simulation has
led to much interest in problems where these devices can exceed the
capabilities of existing classical computers and known methods. Approaching
this for problems that go beyond testing the performance of a quantum device is
an important step, and quantum simulation of many-body quench dynamics is one
of the most promising candidates for early practical quantum advantage. We
analyse the requirements for quantitatively reliable quantum simulation beyond
the capabilities of existing classical methods for analogue quantum simulators
with neutral atoms in optical lattices and trapped ions. Considering the
primary sources of error in analogue devices and how they propagate after a
quench in studies of the Hubbard or long-range transverse field Ising model, we
identify the level of error expected in quantities we extract from experiments.
We conclude for models that are directly implementable that regimes of
practical quantum advantage are attained in current experiments with analogue
simulators. We also identify the hardware requirements to reach the same level
of accuracy with future fault-tolerant digital quantum simulation. Verification
techniques are already available to test the assumptions we make here, and
demonstrating these in experiments will be an important next step.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum Tunneling: From Theory to Error-Mitigated Quantum Simulation [49.1574468325115]
This study presents the theoretical background and the hardware aware circuit implementation of a quantum tunneling simulation.
We use error mitigation techniques (ZNE and REM) and multiprogramming of the quantum chip for solving the hardware under-utilization problem.
arXiv Detail & Related papers (2024-04-10T14:27:07Z) - Toward coherent quantum computation of scattering amplitudes with a
measurement-based photonic quantum processor [0.0]
We discuss the feasibility of using quantum optical simulation for studying scattering observables that are presently inaccessible via lattice QCD.
We show that recent progress in measurement-based photonic quantum computing can be leveraged to provide deterministic generation of required exotic gates.
arXiv Detail & Related papers (2023-12-19T21:36:07Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Adaptively partitioned analog quantum simulation on near-term quantum
computers: The nonclassical free-induction decay of NV centers in diamond [0.24475591916185496]
We propose an alternative analog simulation approach on near-term quantum devices.
Our approach circumvents the limitations by adaptively partitioning the bath into several groups.
This work sheds light on a flexible approach to simulate large-scale materials on noisy near-term quantum computers.
arXiv Detail & Related papers (2023-03-03T14:39:48Z) - A Herculean task: Classical simulation of quantum computers [4.12322586444862]
This work reviews the state-of-the-art numerical simulation methods that emulate quantum computer evolution under specific operations.
We focus on the mainstream state-vector and tensor-network paradigms while briefly mentioning alternative methods.
arXiv Detail & Related papers (2023-02-17T13:59:53Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - The Coming Decades of Quantum Simulation [0.0]
We focus on various shades of quantum simulation (Noisy Intermediate Scale Quantum, NISQ) devices, analogue and digital quantum simulators and quantum annealers.
There is a clear need and quest for such systems that, without necessarily simulating quantum dynamics of some physical systems, can generate massive, controllable, robust, entangled, and superposition states.
This will, in particular, allow the control of decoherence, enabling the use of these states for quantum communications.
arXiv Detail & Related papers (2022-04-19T14:02:32Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.