論文の概要: A study of tree-based methods and their combination
- arxiv url: http://arxiv.org/abs/2204.13916v1
- Date: Fri, 29 Apr 2022 07:33:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-03 01:35:08.430747
- Title: A study of tree-based methods and their combination
- Title(参考訳): 木に基づく手法とその組み合わせに関する研究
- Authors: Yinuo Zeng
- Abstract要約: 木に基づく手法は、様々な分野において一般的な機械学習技術である。
本研究は,本研究の基盤と,その適合過程を加速させる重要なサンプル学習アンサンブル(ISLE)の枠組みを概観する。
本報告では,ISLEを用いた木系手法において,適応回帰(アダプティブレグレッシブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Tree-based methods are popular machine learning techniques used in various
fields. In this work, we review their foundations and a general framework the
importance sampled learning ensemble (ISLE) that accelerates their fitting
process. Furthermore, we describe a model combination strategy called the
adaptive regression by mixing (ARM), which is feasible for tree- based methods
via ISLE. Moreover, three modified ISLEs are proposed, and their performance
are evaluated on the real data sets.
- Abstract(参考訳): ツリーベースの手法は、さまざまな分野で使用される一般的な機械学習技術である。
本研究は,本研究の基盤と,その適合過程を加速させる重要なサンプル学習アンサンブル(ISLE)の枠組みを概観する。
さらに、ISLEを用いた木に基づく手法で実現可能なARM(Adaptive regression by Mixing)と呼ばれるモデル組合せ戦略について述べる。
さらに、3つの修正ISLEを提案し、その性能を実データで評価する。
関連論文リスト
- Diversifying the Expert Knowledge for Task-Agnostic Pruning in Sparse Mixture-of-Experts [75.85448576746373]
本稿では,モデルのパラメータ効率を向上させるために,類似の専門家をグループ化し,グループ化する方法を提案する。
提案手法の有効性を3つの最先端MoEアーキテクチャを用いて検証する。
評価の結果,本手法は自然言語タスクにおいて,他のモデルプルーニング手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-07-12T17:25:02Z) - Relation-aware Ensemble Learning for Knowledge Graph Embedding [68.94900786314666]
我々は,既存の手法を関係性に配慮した方法で活用し,アンサンブルを学習することを提案する。
関係認識アンサンブルを用いてこれらのセマンティクスを探索すると、一般的なアンサンブル法よりもはるかに大きな検索空間が得られる。
本稿では,リレーショナルなアンサンブル重みを独立に検索する分割探索合成アルゴリズムRelEns-DSCを提案する。
論文 参考訳(メタデータ) (2023-10-13T07:40:12Z) - Variable Importance Matching for Causal Inference [73.25504313552516]
これらの目標を達成するためのModel-to-Matchと呼ばれる一般的なフレームワークについて説明する。
Model-to-Matchは、距離メートル法を構築するために変数重要度測定を使用する。
LASSO を用いて Model-to-Match フレームワークを運用する。
論文 参考訳(メタデータ) (2023-02-23T00:43:03Z) - Inverse Reinforcement Learning for Text Summarization [52.765898203824975]
本稿では,抽象的な要約モデルを学習するための効果的なパラダイムとして,逆強化学習(IRL)を導入する。
異なる領域におけるデータセット間の実験結果は、MLEおよびRLベースラインに対する要約のための提案したIRLモデルの優位性を示す。
論文 参考訳(メタデータ) (2022-12-19T23:45:05Z) - Context-Aware Ensemble Learning for Time Series [11.716677452529114]
本稿では,ベースモデルの特徴ベクトルの結合である特徴のスーパーセットを用いて,ベースモデル予測を効果的に組み合わせたメタ学習手法を提案する。
我々のモデルは、ベースモデルの予測を機械学習アルゴリズムの入力として使用するのではなく、問題の状態に基づいて各時点における最良の組み合わせを選択する。
論文 参考訳(メタデータ) (2022-11-30T10:36:13Z) - Federated Learning Aggregation: New Robust Algorithms with Guarantees [63.96013144017572]
エッジでの分散モデルトレーニングのために、フェデレートラーニングが最近提案されている。
本稿では,連合学習フレームワークにおける集約戦略を評価するために,完全な数学的収束解析を提案する。
損失の値に応じてクライアントのコントリビューションを差別化することで、モデルアーキテクチャを変更できる新しい集約アルゴリズムを導出する。
論文 参考訳(メタデータ) (2022-05-22T16:37:53Z) - Ensemble Learning-Based Approach for Improving Generalization Capability
of Machine Reading Comprehension Systems [0.7614628596146599]
機械読み取り(MRC)は、近年、多くの開発が成功した自然言語処理の活発な分野である。
分布精度が高いにもかかわらず、これらのモデルには2つの問題がある。
本稿では,大規模モデルを再学習することなく,MCCシステムの一般化を改善するためのアンサンブル学習手法の効果について検討する。
論文 参考訳(メタデータ) (2021-07-01T11:11:17Z) - Relearning ensemble selection based on new generated features [0.0]
提案手法は,3つのベンチマークデータセットと1つの合成データセットを用いて,最先端のアンサンブル手法と比較した。
提案手法の評価には4つの分類性能指標を用いる。
論文 参考訳(メタデータ) (2021-06-12T12:45:32Z) - Control as Hybrid Inference [62.997667081978825]
本稿では、反復推論と償却推論のバランスを自然に仲介するCHIの実装について述べる。
連続的な制御ベンチマークでアルゴリズムのスケーラビリティを検証し、強力なモデルフリーおよびモデルベースラインを上回る性能を示す。
論文 参考訳(メタデータ) (2020-07-11T19:44:09Z) - StackGenVis: Alignment of Data, Algorithms, and Models for Stacking Ensemble Learning Using Performance Metrics [4.237343083490243]
機械学習(ML)では、バッグング、ブースティング、スタックングといったアンサンブル手法が広く確立されている。
StackGenVisは、スタック化された一般化のためのビジュアル分析システムである。
論文 参考訳(メタデータ) (2020-05-04T15:43:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。