論文の概要: SHAP-Guided Regularization in Machine Learning Models
- arxiv url: http://arxiv.org/abs/2507.23665v1
- Date: Thu, 31 Jul 2025 15:45:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-01 17:19:10.038385
- Title: SHAP-Guided Regularization in Machine Learning Models
- Title(参考訳): 機械学習モデルにおけるSHAP誘導正規化
- Authors: Amal Saadallah,
- Abstract要約: 本稿では,特徴量制約をモデルトレーニングに組み込んだSHAP誘導正規化フレームワークを提案する。
提案手法は, アントロピーに基づくペナルティを応用し, スパース, 集中した特徴属性の促進と, 試料間の安定性の促進を図った。
- 参考スコア(独自算出の注目度): 1.0515439489916734
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Feature attribution methods such as SHapley Additive exPlanations (SHAP) have become instrumental in understanding machine learning models, but their role in guiding model optimization remains underexplored. In this paper, we propose a SHAP-guided regularization framework that incorporates feature importance constraints into model training to enhance both predictive performance and interpretability. Our approach applies entropy-based penalties to encourage sparse, concentrated feature attributions while promoting stability across samples. The framework is applicable to both regression and classification tasks. Our first exploration started with investigating a tree-based model regularization using TreeSHAP. Through extensive experiments on benchmark regression and classification datasets, we demonstrate that our method improves generalization performance while ensuring robust and interpretable feature attributions. The proposed technique offers a novel, explainability-driven regularization approach, making machine learning models both more accurate and more reliable.
- Abstract(参考訳): SHAP(SHapley Additive ExPlanations)のような特徴帰属的手法は、機械学習モデルの理解に役立っているが、モデル最適化の導出におけるそれらの役割はいまだ解明されていない。
本稿では,特徴量制約をモデルトレーニングに組み込んだSHAP誘導型正規化フレームワークを提案する。
提案手法は, アントロピーに基づくペナルティを適用し, スパース, 集中した特徴属性を促進しつつ, サンプル間の安定性を促進させる。
このフレームワークは回帰処理と分類処理の両方に適用できる。
最初の調査は、TreeSHAPを用いたツリーベースモデル正規化の調査から始まりました。
ベンチマーク回帰と分類データセットに関する広範な実験を通じて,本手法は,頑健かつ解釈可能な特徴属性を確保しつつ,一般化性能を向上させることを実証した。
提案手法は、新しい説明可能性駆動型正規化アプローチを提供し、機械学習モデルをより正確かつ信頼性の高いものにする。
関連論文リスト
- Interpretable Credit Default Prediction with Ensemble Learning and SHAP [3.948008559977866]
本研究では、信用デフォルト予測の問題に焦点をあて、機械学習に基づくモデリングフレームワークを構築し、様々な主流分類アルゴリズムの比較実験を行う。
その結果、アンサンブル学習法は、特に特徴とデータ不均衡問題の間の複雑な非線形関係を扱う際に、予測性能に明らかな利点があることが示唆された。
外部クレジットスコア変数はモデル決定において主要な役割を担い、モデルの解釈可能性と実用的な応用価値を改善するのに役立ちます。
論文 参考訳(メタデータ) (2025-05-27T07:23:22Z) - LARES: Latent Reasoning for Sequential Recommendation [96.26996622771593]
本稿では、シークエンシャルレコメンデーションのための新しいスケーラブルなLatent ReasoningフレームワークであるLARESを紹介する。
提案手法では,パラメータの複雑性を増大させることなく推理深度を柔軟に拡張できる再帰的アーキテクチャを用いている。
我々のフレームワークは既存の高度なモデルとのシームレスな互換性を示し、推奨性能をさらに向上させる。
論文 参考訳(メタデータ) (2025-05-22T16:22:54Z) - Self-Boost via Optimal Retraining: An Analysis via Approximate Message Passing [58.52119063742121]
独自の予測と潜在的にノイズの多いラベルを使ってモデルをトレーニングすることは、モデルパフォーマンスを改善するためのよく知られた戦略である。
本稿では,モデルの予測と提供ラベルを最適に組み合わせる方法について論じる。
我々の主な貢献は、現在のモデルの予測と与えられたラベルを組み合わせたベイズ最適集約関数の導出である。
論文 参考訳(メタデータ) (2025-05-21T07:16:44Z) - FORCE: Feature-Oriented Representation with Clustering and Explanation [0.0]
SHAPに基づく教師付きディープラーニングフレームワークForceを提案する。
ニューラルネットワークアーキテクチャにおけるSHAP値の2段階の使用に依存している。
我々はForceが潜在機能とアテンションフレームワークを組み込まないネットワークと比較して、全体的なパフォーマンスを劇的に改善したことを示す。
論文 参考訳(メタデータ) (2025-04-07T22:05:50Z) - Self-Improvement in Language Models: The Sharpening Mechanism [70.9248553790022]
我々は、レンズを通して自己改善の能力について、新たな視点を提供する。
言語モデルは、正しい応答を生成する場合よりも、応答品質の検証が優れているという観察に感銘を受けて、後学習において、モデル自体を検証対象として、自己改善を形式化する。
SFTとRLHFに基づく自己改善アルゴリズムの2つの自然ファミリーを解析する。
論文 参考訳(メタデータ) (2024-12-02T20:24:17Z) - Towards Stable Machine Learning Model Retraining via Slowly Varying Sequences [6.067007470552307]
そこで本研究では,リトレーニングを繰り返して安定なモデル列を見つけるためのモデルに依存しないフレームワークを提案する。
最適モデルの復元が保証される混合整数最適化の定式化を開発する。
平均的に、予測力の2%の低下は、安定性の30%の改善につながることが判明した。
論文 参考訳(メタデータ) (2024-03-28T22:45:38Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z) - How robust are pre-trained models to distribution shift? [82.08946007821184]
自己教師付き学習(SSL)と自己エンコーダベースモデル(AE)の相互関係が相互関係に与える影響を示す。
本研究では, 線形ヘッドの潜在バイアスから事前学習したモデルの性能を分離するために, アウト・オブ・ディストリビューション(OOD)データに基づいて訓練された線形ヘッドを用いた新しい評価手法を開発した。
論文 参考訳(メタデータ) (2022-06-17T16:18:28Z) - Control as Hybrid Inference [62.997667081978825]
本稿では、反復推論と償却推論のバランスを自然に仲介するCHIの実装について述べる。
連続的な制御ベンチマークでアルゴリズムのスケーラビリティを検証し、強力なモデルフリーおよびモデルベースラインを上回る性能を示す。
論文 参考訳(メタデータ) (2020-07-11T19:44:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。