論文の概要: A Comparative Study of Meter Detection Methods for Automated
Infrastructure Inspection
- arxiv url: http://arxiv.org/abs/2204.14117v1
- Date: Sun, 24 Apr 2022 13:59:57 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-09 01:51:39.702356
- Title: A Comparative Study of Meter Detection Methods for Automated
Infrastructure Inspection
- Title(参考訳): 自動インフラ検査のためのメータ検出手法の比較検討
- Authors: Yusuke Ohtsubo, Takuto Sato, Hirohiko Sagawa
- Abstract要約: 本研究では, 形状ベース, テクスチャベース, 背景情報ベースを計測領域検出手法として開発した。
その結果, 背景情報に基づく手法は, 形状や数に関わらず最遠距離の計測が可能であり, 直径40pxの安定検出が可能であることを確認した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In order to read meter values from a camera on an autonomous inspection robot
with positional errors, it is necessary to detect meter regions from the image.
In this study, we developed shape-based, texture-based, and background
information-based methods as meter area detection techniques and compared their
effectiveness for meters of different shapes and sizes. As a result, we
confirmed that the background information-based method can detect the farthest
meters regardless of the shape and number of meters, and can stably detect
meters with a diameter of 40px.
- Abstract(参考訳): 位置誤差のある自律検査ロボットにおいてカメラからメーター値を読み取るためには,画像からメーター領域を検出する必要がある。
本研究では, 形状, テクスチャ, 背景情報に基づく手法をメータ領域検出手法として開発した。
その結果, 背景情報に基づく手法は, 形状や数に関わらず最遠距離の計測が可能であり, 直径40pxの安定検出が可能であることを確認した。
関連論文リスト
- Construction of Object Boundaries for the Autopilotof a Surface Robot
from Satellite Imagesusing Computer Vision Methods [101.18253437732933]
衛星地図上での水物体を検出する手法を提案する。
輪郭のGPS座標を計算するアルゴリズムを作成する。
提案アルゴリズムは,表面ロボットオートパイロットモジュールに適したフォーマットで結果の保存を可能にする。
論文 参考訳(メタデータ) (2022-12-05T12:07:40Z) - Mapping LiDAR and Camera Measurements in a Dual Top-View Grid
Representation Tailored for Automated Vehicles [3.337790639927531]
本稿では,LiDARやカメラなどの画像センサのための汎用的な網網マッピングパイプラインを提案する。
グリッドに基づく明らかなモデルでは,セル占有率と接地率を別々に推定する。
本手法は,セル占有率を高精細度かつ高精細度に評価し,効率を最大化し,外部処理モジュールへの依存性を最小限に抑える。
論文 参考訳(メタデータ) (2022-04-16T23:51:20Z) - Human-in-the-Loop Disinformation Detection: Stance, Sentiment, or
Something Else? [93.91375268580806]
政治とパンデミックは、機械学習対応の偽ニュース検出アルゴリズムの開発に十分な動機を与えている。
既存の文献は、主に完全自動化されたケースに焦点を当てているが、その結果得られた技術は、軍事応用に必要な様々なトピック、ソース、時間スケールに関する偽情報を確実に検出することはできない。
既に利用可能なアナリストを人間のループとして活用することにより、感情分析、アスペクトベースの感情分析、姿勢検出といった標準的な機械学習技術は、部分的に自動化された偽情報検出システムに使用するためのもっとも有効な方法となる。
論文 参考訳(メタデータ) (2021-11-09T13:30:34Z) - Incorporating Data Uncertainty in Object Tracking Algorithms [2.3204178451683264]
物体追跡法は、通常、測定ノイズ、偽陽性率、発見率の欠落という形で測定誤差モデルに依存する。
ニューラルネット処理されたカメラ入力から生成された検出では、測定誤差統計はエラーの主原因を表すのに十分ではない。
本研究では,オブジェクトの追跡能力の向上など,データ不確実性をオブジェクト追跡手法に組み込むことについて検討する。
論文 参考訳(メタデータ) (2021-09-22T05:30:46Z) - Supervision by Registration and Triangulation for Landmark Detection [70.13440728689231]
本稿では,マルチビュー映像を用いた教師なし手法である登録・三角測量(srt)による監視を行い,ランドマーク検出器の精度と精度を向上させる。
ラベルのないデータを活用することで、検出者は大量のラベルのないデータから自由に学べる。
論文 参考訳(メタデータ) (2021-01-25T02:48:21Z) - Self-Supervised Person Detection in 2D Range Data using a Calibrated
Camera [83.31666463259849]
2次元LiDARに基づく人検出器のトレーニングラベル(擬似ラベル)を自動生成する手法を提案する。
擬似ラベルで訓練または微調整された自己監視検出器が,手動アノテーションを用いて訓練された検出器を上回っていることを示した。
私達の方法は付加的な分類の努力なしで配置の間に人の探知器を改善する有効な方法です。
論文 参考訳(メタデータ) (2020-12-16T12:10:04Z) - Tiny-YOLO object detection supplemented with geometrical data [0.0]
本研究では,シーン形状に関する事前知識の助けを借りて,検出精度(mAP)を向上させる手法を提案する。
我々は自律型ロボットに注目するので、ロボットの寸法とカメラの傾斜角を考えると、入力フレームの各ピクセルの空間スケールを予測することができる。
論文 参考訳(メタデータ) (2020-08-05T14:45:19Z) - A machine learning-based method for estimating the number and
orientations of major fascicles in diffusion-weighted magnetic resonance
imaging [7.032850705203263]
本稿では,ボクセル内のファシクルを正確に推定するマシンベース手法を提案する。
我々の手法はシミュレーションまたは実測値で訓練することができる。
論文 参考訳(メタデータ) (2020-06-19T13:07:45Z) - Black-box Explanation of Object Detectors via Saliency Maps [66.745167677293]
対象検出器の予測のための視覚的説明を生成するD-RISEを提案する。
本稿では, YOLOv3などの1段検出器やFaster-RCNNのような2段検出器など, 異なる対象検出器に容易にD-RISEを適用可能であることを示す。
論文 参考訳(メタデータ) (2020-06-05T02:13:35Z) - Beyond Photometric Consistency: Gradient-based Dissimilarity for
Improving Visual Odometry and Stereo Matching [46.27086269084186]
本稿では,光度誤差の考え方に基づく画像の登録のための新しい指標について検討する。
ステレオ推定とビジュアルオドメトリーシステムの両方に統合し、典型的な相違と直接画像登録タスクに明確な利点を示す。
論文 参考訳(メタデータ) (2020-04-08T16:13:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。