論文の概要: Incorporating Data Uncertainty in Object Tracking Algorithms
- arxiv url: http://arxiv.org/abs/2109.10521v1
- Date: Wed, 22 Sep 2021 05:30:46 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-23 20:24:40.389112
- Title: Incorporating Data Uncertainty in Object Tracking Algorithms
- Title(参考訳): 物体追跡アルゴリズムにおけるデータの不確かさの取り込み
- Authors: Anish Muthali, Forrest Laine, Claire Tomlin
- Abstract要約: 物体追跡法は、通常、測定ノイズ、偽陽性率、発見率の欠落という形で測定誤差モデルに依存する。
ニューラルネット処理されたカメラ入力から生成された検出では、測定誤差統計はエラーの主原因を表すのに十分ではない。
本研究では,オブジェクトの追跡能力の向上など,データ不確実性をオブジェクト追跡手法に組み込むことについて検討する。
- 参考スコア(独自算出の注目度): 2.3204178451683264
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Methodologies for incorporating the uncertainties characteristic of
data-driven object detectors into object tracking algorithms are explored.
Object tracking methods rely on measurement error models, typically in the form
of measurement noise, false positive rates, and missed detection rates. Each of
these quantities, in general, can be dependent on object or measurement
location. However, for detections generated from neural-network processed
camera inputs, these measurement error statistics are not sufficient to
represent the primary source of errors, namely a dissimilarity between run-time
sensor input and the training data upon which the detector was trained. To this
end, we investigate incorporating data uncertainty into object tracking methods
such as to improve the ability to track objects, and particularly those which
out-of-distribution w.r.t. training data. The proposed methodologies are
validated on an object tracking benchmark as well on experiments with a real
autonomous aircraft.
- Abstract(参考訳): データ駆動型物体検出装置の不確実性特性を物体追跡アルゴリズムに組み込む手法について検討した。
対象追跡法は測定誤差モデルに依存しており、一般的には測定ノイズ、偽陽性率、検出率の欠如による。
これらの量は、一般に、対象または測定位置に依存することができる。
しかしながら、ニューラルネット処理されたカメラ入力から生成された検出では、これらの測定誤差統計は、主にエラーの原因、すなわち、ランタイムセンサー入力と検出器が訓練されたトレーニングデータとの相違を表すには不十分である。
そこで本研究では,オブジェクトの追跡能力の向上など,データ不確実性をオブジェクト追跡手法に組み込むことについて検討する。
提案手法は、実際の自律航空機による実験と同様に、物体追跡ベンチマークで検証される。
関連論文リスト
- Road Obstacle Detection based on Unknown Objectness Scores [0.0]
異常検出技術により、未知の物体の画素をオフ・オブ・ディストリビューション(OoD)サンプルとして識別することができる。
本研究の目的は,物体検出の手法を画素単位の異常検出手法に組み込むことで,未知物体を検出するための安定した性能を実現することである。
論文 参考訳(メタデータ) (2024-03-27T02:35:36Z) - Deployment Prior Injection for Run-time Calibratable Object Detection [58.636806402337776]
検出器に追加のグラフ入力を導入し、事前にグラフが配置コンテキストを表す。
テストフェーズでは、事前に適切なデプロイメントコンテキストをグラフ編集を通じて検出器に注入することができる。
事前の配置が分かっていない場合でも、検出器は独自の予測を用いて、事前に近似した配置を用いて自己校正を行うことができる。
論文 参考訳(メタデータ) (2024-02-27T04:56:04Z) - Uncertainty-Aware AB3DMOT by Variational 3D Object Detection [74.8441634948334]
不確実性推定は統計的に正確な予測を提供する効果的なツールである。
本稿では,変分ニューラルネットワークを用いたTANet 3Dオブジェクト検出器を提案し,不確実性のある3Dオブジェクト検出を行う。
論文 参考訳(メタデータ) (2023-02-12T14:30:03Z) - Object detection-based inspection of power line insulators: Incipient
fault detection in the low data-regime [0.0]
本研究は,円盤内の初期欠陥に着目し,空画像からの絶縁体および資産検査のための3つの物体検出タスクを定式化する。
我々は、健康かつ欠陥のある絶縁体を検出するための堅牢な特徴を学習するために使用できる、絶縁体画像の大規模な参照データセットをキュレートする。
その結果, 物体検出モデルを用いて, 絶縁体中の欠陥を早期に検出できることが示唆された。
論文 参考訳(メタデータ) (2022-12-21T13:49:19Z) - Trajectory Forecasting from Detection with Uncertainty-Aware Motion
Encoding [121.66374635092097]
物体検出と追跡から得られる軌道は、必然的にうるさい。
本稿では, 明示的に形成された軌道に依存することなく, 直接検出結果に基づく軌道予測器を提案する。
論文 参考訳(メタデータ) (2022-02-03T09:09:56Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3Dオブジェクト検出ネットワークは、トレーニングされたデータに対してバイアスを受ける傾向がある。
そこで本研究では,ライダーを用いた3次元物体検出器のソースレス・教師なし領域適応のための単一フレーム手法を提案する。
論文 参考訳(メタデータ) (2021-11-30T18:42:42Z) - CertainNet: Sampling-free Uncertainty Estimation for Object Detection [65.28989536741658]
ニューラルネットワークの不確実性を推定することは、安全クリティカルな設定において基本的な役割を果たす。
本研究では,オブジェクト検出のための新しいサンプリング不要不確実性推定法を提案する。
私たちはそれをCertainNetと呼び、各出力信号に対して、オブジェクト性、クラス、位置、サイズという、別の不確実性を提供するのは、これが初めてです。
論文 参考訳(メタデータ) (2021-10-04T17:59:31Z) - Labels Are Not Perfect: Inferring Spatial Uncertainty in Object
Detection [26.008419879970365]
本研究では,生成モデルに基づいて,lidar point cloudのバウンディングボックスラベルの不確かさを推定する。
包括的実験により,提案モデルはライダー知覚とラベル品質の複雑な環境雑音を反映していることがわかった。
ラベルの不確実性を組み込んだ新しい評価指標としてJaccard IoUを提案する。
論文 参考訳(メタデータ) (2020-12-18T09:11:44Z) - Slender Object Detection: Diagnoses and Improvements [74.40792217534]
本稿では,超高アスペクト比,すなわちtextbfslender オブジェクトの特定タイプの検出について検討する。
古典的物体検出法では、細い物体に対してのみ評価される場合、COCO上の18.9%のmAPの劇的な低下が観察される。
論文 参考訳(メタデータ) (2020-11-17T09:39:42Z) - Uncertainty-Aware Voxel based 3D Object Detection and Tracking with
von-Mises Loss [13.346392746224117]
不確実性は、認識システムのエラーに対処し、堅牢性を改善するのに役立ちます。
本稿では,SECOND検出器に不確実性レグレッションを追加することにより,目標追尾性能を向上させる手法を提案する。
論文 参考訳(メタデータ) (2020-11-04T21:53:31Z) - Efficient and accurate object detection with simultaneous classification
and tracking [1.4620086904601473]
本稿では,ポイントストリーム内の同時分類と追跡に基づく検出フレームワークを提案する。
このフレームワークでは、トラッカーが点雲のシーケンスでデータアソシエーションを行い、冗長な処理を避けるために検出器を誘導する。
ベンチマーク・データセットを用いて実験を行い,提案手法が従来のトラッキング・バイ・ディテクト・アプローチより優れていることを示した。
論文 参考訳(メタデータ) (2020-07-04T10:22:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。