Path integral in position-deformed Heisenberg algebra with strong
quantum gravitational measurement
- URL: http://arxiv.org/abs/2204.14122v1
- Date: Fri, 29 Apr 2022 14:21:30 GMT
- Title: Path integral in position-deformed Heisenberg algebra with strong
quantum gravitational measurement
- Authors: Lat\'evi M. Lawson, Prince K. Osei, Komi Sodoga and Fred Soglohu
- Abstract summary: We show that quantum gravity bends the paths of particles, allowing them to travel quickly from one point to another.
It is numerically observed by the decrease in values of classical actions as one increases the quantum gravitational effects.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Position-deformed Heisenberg algebra with maximal length uncertainty has
recently been proven to induce strong quantum gravitational fields at the
Planck scale (2022 J. Phys. A: Math. Theor.55 105303). In the present study, we
use the position space representation on the one hand and the Fourier transform
and its inverse representations on the other to construct propagators of path
integrals within this deformed algebra. The propagators and the corresponding
actions of a free particle and a simple harmonic oscillator are discussed as
examples. Since the effects of quantum gravity are strong in this Euclidean
space, we show that the actions which describe the classical trajectories of
both systems are bounded by the ordinary ones of classical mechanics. This
indicates that quantum gravity bends the paths of particles, allowing them to
travel quickly from one point to another. It is numerically observed by the
decrease in values of classical actions as one increases the quantum
gravitational effects.
Related papers
- Quantum Mechanics in Curved Space(time) with a Noncommutative Geometric Perspective [0.0]
We take seriously the noncommutative symplectic geometry corresponding to the quantum observable algebra.
The work points to a very different approach to quantum gravity.
arXiv Detail & Related papers (2024-06-20T10:44:06Z) - Relativistic Dips in Entangling Power of Gravity [0.0]
We show that quantum correlations can remain strongly suppressed for certain choices of parameters.
We find a pronounced cancellation point far from the Planck scale, where the system tends towards classicalization.
arXiv Detail & Related papers (2024-05-07T20:44:30Z) - The quantum Hall effect under the influence of gravity and inertia: A
unified approach [44.99833362998488]
We examine how both the integer and the fractional quantum Hall effects behave under a combined influence of gravity and inertia.
The general Hamiltonian for describing the combined effect of gravity, rotation and inertia on the electrons of a Hall sample is then built and the eigenstates are obtained.
arXiv Detail & Related papers (2024-03-11T18:01:55Z) - An algebraic approach to gravitational quantum mechanics [0.0]
We study various models of gravitational quantum mechanics.
The free time evolution of a Gaussian wave packet is investigated.
The spectral properties of a particle bound by an external attractive potential are considered.
arXiv Detail & Related papers (2024-02-27T15:54:18Z) - Upper limit on the acceleration of a quantum evolution in projective Hilbert space [0.0]
We derive an upper bound for the rate of change of the speed of transportation in an arbitrary finite-dimensional projective Hilbert space.
We show that the acceleration squared of a quantum evolution in projective space is upper bounded by the variance of the temporal rate of change of the Hamiltonian operator.
arXiv Detail & Related papers (2023-11-30T11:22:59Z) - On tests of the quantum nature of gravitational interactions in presence
of non-linear corrections to quantum mechanics [6.138671548064356]
We show that entanglement dynamics can occur in the presence of a weak quantum interaction and non-linear corrections to local quantum mechanics.
This highlights the importance of going beyond entanglement detection to conclusively test the quantum character of gravity.
arXiv Detail & Related papers (2023-02-01T10:49:31Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - Quantum time dilation in a gravitational field [39.58317527488534]
We investigate how the superposition principle affects the gravitational time dilation observed by a simple clock.
We show that the emission rate of an atom prepared in a coherent superposition of separated wave packets in a gravitational field is different from the emission rate of an atom in a classical mixture of these packets.
arXiv Detail & Related papers (2022-04-22T10:02:21Z) - Thermodynamics of ideal gas at Planck scale with strong quantum gravity
measurement [0.0]
We study the dynamics of a free particle confined in an infinite square well potential in one dimension of this space.
We show that the energy spectrum of this system is weakly proportional to the ordinary one of quantum mechanics free of the theory of gravity.
arXiv Detail & Related papers (2021-02-26T23:57:23Z) - Experimental measurement of the divergent quantum metric of an
exceptional point [10.73176455098217]
We report the first experimental measurement of the quantum metric in a non-Hermitian system.
The specific platform under study is an organic microcavity with exciton-polariton eigenstates, which demonstrate exceptional points.
arXiv Detail & Related papers (2020-11-24T11:31:03Z) - Observation of gauge invariance in a 71-site Bose-Hubbard quantum
simulator [5.5847872095969375]
Gauge theories implement fundamental laws of physics by local symmetry constraints.
In quantum electrodynamics, Gauss's law introduces an intrinsic local relation between charged matter and electromagnetic fields.
We simulate gauge-theory dynamics in microscopically engineered quantum devices.
arXiv Detail & Related papers (2020-03-19T18:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.