論文の概要: Explainable AI via Learning to Optimize
- arxiv url: http://arxiv.org/abs/2204.14174v2
- Date: Sun, 11 Jun 2023 13:11:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-14 03:09:33.504221
- Title: Explainable AI via Learning to Optimize
- Title(参考訳): 学習と最適化による説明可能なAI
- Authors: Howard Heaton and Samy Wu Fung
- Abstract要約: 機械学習(ML)では非解読可能なブラックボックスが一般的だが、アプリケーションは説明可能な人工知能(XAI)を必要としている。
この作業は、事前の知識を符号化し、信頼できない推論をフラグ付けしなければならない状況において、XAIのための具体的なツールを提供する。
- 参考スコア(独自算出の注目度): 2.8010955192967852
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Indecipherable black boxes are common in machine learning (ML), but
applications increasingly require explainable artificial intelligence (XAI).
The core of XAI is to establish transparent and interpretable data-driven
algorithms. This work provides concrete tools for XAI in situations where prior
knowledge must be encoded and untrustworthy inferences flagged. We use the
"learn to optimize" (L2O) methodology wherein each inference solves a
data-driven optimization problem. Our L2O models are straightforward to
implement, directly encode prior knowledge, and yield theoretical guarantees
(e.g. satisfaction of constraints). We also propose use of interpretable
certificates to verify whether model inferences are trustworthy. Numerical
examples are provided in the applications of dictionary-based signal recovery,
CT imaging, and arbitrage trading of cryptoassets. Code and additional
documentation can be found at https://xai-l2o.research.typal.academy.
- Abstract(参考訳): 機械学習(ML)では非解読可能なブラックボックスが一般的であるが、アプリケーションは説明可能な人工知能(XAI)を必要としている。
XAIの中核は、透明で解釈可能なデータ駆動アルゴリズムを確立することである。
この作業は、事前の知識を符号化し、信頼できない推論をフラグ付けしなければならない状況において、XAIのための具体的なツールを提供する。
各推論がデータ駆動最適化問題を解決する"learn to optimize"(l2o)方法論を使用する。
私たちのl2oモデルは実装が簡単で、事前知識を直接エンコードし、理論的保証(例えば制約の満足度)を与えます。
また,モデル推論が信頼できるかどうかを検証するために,解釈可能な証明書の利用を提案する。
数値的な例は、辞書ベースの信号回復、CTイメージング、および暗号通貨の仲裁取引の適用例である。
コードと追加のドキュメントはhttps://xai-l2o.research.typal.academyにある。
関連論文リスト
- OpenCoder: The Open Cookbook for Top-Tier Code Large Language Models [70.72097493954067]
コードのための大規模言語モデル(LLM)は、コード生成、推論タスク、エージェントシステムなど、さまざまな領域で必須になっている。
オープンアクセスのコード LLM はプロプライエタリなモデルの性能レベルに近づきつつあるが、高品質なコード LLM は依然として限られている。
トップクラスのコードLLMであるOpenCoderは、主要なモデルに匹敵するパフォーマンスを達成するだけでなく、研究コミュニティの"オープンクックブック"としても機能します。
論文 参考訳(メタデータ) (2024-11-07T17:47:25Z) - Explainable AI needs formal notions of explanation correctness [2.1309989863595677]
医学のような重要な分野における機械学習はリスクをもたらし、規制を必要とする。
1つの要件は、リスクの高いアプリケーションにおけるMLシステムの決定は、人間に理解可能なものであるべきです。
現在の形式では、XAIはMLの品質管理に不適であり、それ自体は精査が必要である。
論文 参考訳(メタデータ) (2024-09-22T20:47:04Z) - MUSE: Machine Unlearning Six-Way Evaluation for Language Models [109.76505405962783]
言語モデル(LM)は、プライベートおよび著作権のあるコンテンツを含む大量のテキストデータに基づいて訓練される。
総合的な機械学習評価ベンチマークであるMUSEを提案する。
人気のある8つのアンラーニングアルゴリズムがハリー・ポッターの本やニュース記事をいかに効果的に解き放つかをベンチマークする。
論文 参考訳(メタデータ) (2024-07-08T23:47:29Z) - Conformal Validity Guarantees Exist for Any Data Distribution (and How to Find Them) [14.396431159723297]
理論上,共形予測はテキスト共同データ分布に拡張可能であることを示す。
最も一般的なケースは計算に実用的でないが、具体的には特定の共形アルゴリズムを導出するための手順を概説する。
論文 参考訳(メタデータ) (2024-05-10T17:40:24Z) - Towards Constituting Mathematical Structures for Learning to Optimize [101.80359461134087]
近年,機械学習を利用してデータから最適化アルゴリズムを自動学習する技術が注目されている。
ジェネリックL2Oアプローチは反復更新ルールをパラメータ化し、ブラックボックスネットワークとして更新方向を学ぶ。
一般的なアプローチは広く適用できるが、学習されたモデルは過度に適合し、配布外テストセットにうまく一般化できない。
本稿では, 分布外問題に対して広く適用でき, 一般化された, 数学に着想を得た構造を持つ新しいL2Oモデルを提案する。
論文 参考訳(メタデータ) (2023-05-29T19:37:28Z) - Interpretability at Scale: Identifying Causal Mechanisms in Alpaca [62.65877150123775]
本研究では、Boundless DASを用いて、命令に従う間、大規模言語モデルにおける解釈可能な因果構造を効率的に探索する。
私たちの発見は、成長し、最も広くデプロイされている言語モデルの内部構造を忠実に理解するための第一歩です。
論文 参考訳(メタデータ) (2023-05-15T17:15:40Z) - Explainable, Interpretable & Trustworthy AI for Intelligent Digital Twin: Case Study on Remaining Useful Life [0.5115559623386964]
エネルギーとエンジニアリングシステムにおけるAIの信頼性に自信を持つことは重要だ。
診断の正確な予測には、説明可能なAI(XAI)と解釈可能な機械学習(IML)が不可欠である。
論文 参考訳(メタデータ) (2023-01-17T03:17:07Z) - Greybox XAI: a Neural-Symbolic learning framework to produce
interpretable predictions for image classification [6.940242990198]
Greybox XAIは、シンボリック知識ベース(KB)を使うことで、DNNと透明モデルを構成するフレームワークである。
我々は、XAIの普遍的基準が欠如している問題に、説明が何であるかを形式化することで対処する。
この新しいアーキテクチャがどのように正確で、いくつかのデータセットで説明可能であるかを示す。
論文 参考訳(メタデータ) (2022-09-26T08:55:31Z) - Symbolic Learning to Optimize: Towards Interpretability and Scalability [113.23813868412954]
近年のL2O(Learning to Optimize)研究は,複雑なタスクに対する最適化手順の自動化と高速化に期待できる道のりを示唆している。
既存のL2Oモデルは、ニューラルネットワークによる最適化ルールをパラメータ化し、メタトレーニングを通じてそれらの数値ルールを学ぶ。
本稿では,L2Oの総合的な記号表現と解析の枠組みを確立する。
そこで本稿では,大規模問題にメタトレーニングを施す軽量なL2Oモデルを提案する。
論文 参考訳(メタデータ) (2022-03-13T06:04:25Z) - A Practical Tutorial on Explainable AI Techniques [5.671062637797752]
このチュートリアルは、コンピュータサイエンスのバックグラウンドを持つすべての読者にとって、手書きの教科書となることを意図している。
機械学習モデルの直感的な洞察を得ることを目標としている。
論文 参考訳(メタデータ) (2021-11-13T17:47:31Z) - Explainability in Deep Reinforcement Learning [68.8204255655161]
説明可能な強化学習(XRL)の実現に向けての最近の成果を概観する。
エージェントの振る舞いを正当化し、説明することが不可欠である重要な状況において、RLモデルのより良い説明可能性と解釈性は、まだブラックボックスと見なされているものの内部動作に関する科学的洞察を得るのに役立つ。
論文 参考訳(メタデータ) (2020-08-15T10:11:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。