論文の概要: To Know by the Company Words Keep and What Else Lies in the Vicinity
- arxiv url: http://arxiv.org/abs/2205.00148v1
- Date: Sat, 30 Apr 2022 03:47:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-05 08:16:37.972032
- Title: To Know by the Company Words Keep and What Else Lies in the Vicinity
- Title(参考訳): 企業における言葉の保存とヴァイシニティにおける嘘
- Authors: Jake Ryland Williams and Hunter Scott Heidenreich
- Abstract要約: 本稿では,GloVe や Word2Vec など,セミナルアルゴリズムによって学習された統計データの解析モデルを提案する。
われわれの知る限りでは、Word2Vecのソフトマックス最適化、スキップグラムアルゴリズムの最初の既知のソリューションである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The development of state-of-the-art (SOTA) Natural Language Processing (NLP)
systems has steadily been establishing new techniques to absorb the statistics
of linguistic data. These techniques often trace well-known constructs from
traditional theories, and we study these connections to close gaps around key
NLP methods as a means to orient future work. For this, we introduce an
analytic model of the statistics learned by seminal algorithms (including GloVe
and Word2Vec), and derive insights for systems that use these algorithms and
the statistics of co-occurrence, in general. In this work, we derive -- to the
best of our knowledge -- the first known solution to Word2Vec's
softmax-optimized, skip-gram algorithm. This result presents exciting potential
for future development as a direct solution to a deep learning (DL) language
model's (LM's) matrix factorization. However, we use the solution to
demonstrate a seemingly-universal existence of a property that word vectors
exhibit and which allows for the prophylactic discernment of biases in data --
prior to their absorption by DL models. To qualify our work, we conduct an
analysis of independence, i.e., on the density of statistical dependencies in
co-occurrence models, which in turn renders insights on the distributional
hypothesis' partial fulfillment by co-occurrence statistics.
- Abstract(参考訳): 最先端(SOTA)自然言語処理(NLP)システムの開発は、言語データの統計を吸収する新しい手法を着実に確立している。
これらの手法は、しばしば従来の理論からよく知られた構造を辿り、これらの接続をキーNLP法を取り巻く密接なギャップを将来の作業の方向性として研究する。
そこで,本研究では,本アルゴリズムを用いたシステムに対する洞察の導出として,seminalアルゴリズム(globとword2vecを含む)によって学習される統計解析モデルを提案する。
この記事では、word2vecのsoftmax最適化スキップグラムアルゴリズムの最初の既知のソリューションとして、最高の知識を導出します。
この結果は,Deep Learning (DL) 言語モデル (LM) 行列分解の直接的な解法として,今後の発展の可能性を示す。
しかし、この解を用いて、ワードベクトルが示し、データ内のバイアスの予防的識別を可能にする性質が、DLモデルによる吸収に先行して存在することを示す。
本研究を検証するために,共起モデルにおける統計的依存性の密度に関する独立性の分析を行い,共起統計による分布仮説の部分的充足に関する洞察を与える。
関連論文リスト
- Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
コンテキスト・イズ・キー (Context is Key) (CiK) は、時系列予測ベンチマークであり、様々な種類のテキストコンテキストと数値データをペアリングする。
我々は,統計モデル,時系列基礎モデル,LLMに基づく予測モデルなど,さまざまなアプローチを評価する。
実験では、文脈情報の導入の重要性を強調し、LLMに基づく予測モデルを用いた場合の驚くべき性能を示すとともに、それらの重要な欠点を明らかにした。
論文 参考訳(メタデータ) (2024-10-24T17:56:08Z) - SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
本稿では,コードに基づく批判モデルを用いて,質問コードデータ構築,品質管理,補完的評価などのステップをガイドする新しいパラダイムを提案する。
英語と中国語におけるドメイン内ベンチマークとドメイン外ベンチマークの両方の実験は、提案したパラダイムの有効性を実証している。
論文 参考訳(メタデータ) (2024-08-28T06:33:03Z) - Large Language Models are Effective Priors for Causal Graph Discovery [6.199818486385127]
専門家によって提供された背景知識を統合して仮説空間を縮小することにより、観測による因果構造発見を改善することができる。
近年,Large Language Models (LLMs) は,人的専門家に対するクエリコストの低さから,事前情報源として考えられ始めている。
論文 参考訳(メタデータ) (2024-05-22T11:39:11Z) - LLM Processes: Numerical Predictive Distributions Conditioned on Natural Language [35.84181171987974]
我々のゴールは、数値データを処理し、任意の場所で確率的予測を行うレグレッションモデルを構築することである。
まず、大規模言語モデルから明示的で一貫性のある数値予測分布を抽出する戦略を探求する。
本研究では,テキストを数値予測に組み込む能力を示し,予測性能を改善し,定性的な記述を反映した定量的な構造を与える。
論文 参考訳(メタデータ) (2024-05-21T15:13:12Z) - The Common Stability Mechanism behind most Self-Supervised Learning
Approaches [64.40701218561921]
自己指導型学習手法の安定性のメカニズムを説明するための枠組みを提供する。
我々は,BYOL,SWAV,SimSiam,Barlow Twins,DINOなどの非コントラスト技術であるSimCLRの動作メカニズムについて議論する。
私たちは異なる仮説を定式化し、Imagenet100データセットを使ってそれらをテストします。
論文 参考訳(メタデータ) (2024-02-22T20:36:24Z) - Beyond the Black Box: A Statistical Model for LLM Reasoning and Inference [0.9898607871253774]
本稿では,大規模言語モデル(LLM)の振る舞いを説明する新しいベイズ学習モデルを提案する。
我々は,先行した多項遷移確率行列で表される理想的な生成テキストモデルに基づく理論的枠組みを開発し,LLMがこの行列をどのように近似するかを検討する。
論文 参考訳(メタデータ) (2024-02-05T16:42:10Z) - Surprisal Driven $k$-NN for Robust and Interpretable Nonparametric
Learning [1.4293924404819704]
我々は情報理論の観点から、隣り合う従来のアルゴリズムに新たな光を当てた。
単一モデルを用いた分類,回帰,密度推定,異常検出などのタスクに対する頑健で解釈可能なフレームワークを提案する。
我々の研究は、分類と異常検出における最先端の成果を達成することによって、アーキテクチャの汎用性を示す。
論文 参考訳(メタデータ) (2023-11-17T00:35:38Z) - Faithful Explanations of Black-box NLP Models Using LLM-generated
Counterfactuals [67.64770842323966]
NLPシステムの予測に関する因果的説明は、安全性を確保し、信頼を確立するために不可欠である。
既存の手法は、しばしばモデル予測を効果的または効率的に説明できない。
本稿では, 対物近似(CF)の2つの手法を提案する。
論文 参考訳(メタデータ) (2023-10-01T07:31:04Z) - MAUVE Scores for Generative Models: Theory and Practice [95.86006777961182]
本報告では,テキストや画像の生成モデルで発生するような分布のペア間の比較尺度であるMAUVEについて述べる。
我々は、MAUVEが人間の文章の分布と現代のニューラル言語モデルとのギャップを定量化できることを発見した。
我々は、MAUVEが既存のメトリクスと同等以上の画像の既知の特性を識別できることを視覚領域で実証する。
論文 参考訳(メタデータ) (2022-12-30T07:37:40Z) - Testing Pre-trained Language Models' Understanding of Distributivity via
Causal Mediation Analysis [13.07356367140208]
自然言語推論のための新しい診断データセットであるDistNLIを紹介する。
モデルの理解の範囲は、モデルのサイズと語彙のサイズと関連していることがわかった。
論文 参考訳(メタデータ) (2022-09-11T00:33:28Z) - Semi-Supervised Learning with Meta-Gradient [123.26748223837802]
半教師付き学習における簡単なメタ学習アルゴリズムを提案する。
その結果,提案アルゴリズムは最先端の手法に対して良好に動作することがわかった。
論文 参考訳(メタデータ) (2020-07-08T08:48:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。