A Heteroskedasticity-Robust Overidentifying Restriction Test with High-Dimensional Covariates
- URL: http://arxiv.org/abs/2205.00171v3
- Date: Mon, 6 May 2024 20:35:42 GMT
- Title: A Heteroskedasticity-Robust Overidentifying Restriction Test with High-Dimensional Covariates
- Authors: Qingliang Fan, Zijian Guo, Ziwei Mei,
- Abstract summary: This paper proposes an overidentifying restriction test for high-dimensional linear instrumental variable models.
The test is scale-invariant and is robust to heteroskedastic errors.
An empirical example of the trade and economic growth nexus demonstrates the usefulness of the proposed test.
- Score: 1.1587112467663427
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes an overidentifying restriction test for high-dimensional linear instrumental variable models. The novelty of the proposed test is that it allows the number of covariates and instruments to be larger than the sample size. The test is scale-invariant and is robust to heteroskedastic errors. To construct the final test statistic, we first introduce a test based on the maximum norm of multiple parameters that could be high-dimensional. The theoretical power based on the maximum norm is higher than that in the modified Cragg-Donald test (Koles\'{a}r, 2018), the only existing test allowing for large-dimensional covariates. Second, following the principle of power enhancement (Fan et al., 2015), we introduce the power-enhanced test, with an asymptotically zero component used to enhance the power to detect some extreme alternatives with many locally invalid instruments. Finally, an empirical example of the trade and economic growth nexus demonstrates the usefulness of the proposed test.
Related papers
- A New Formulation of Lipschitz Constrained With Functional Gradient Learning for GANs [52.55025869932486]
This paper introduces a promising alternative method for training Generative Adversarial Networks (GANs) on large-scale datasets with clear theoretical guarantees.
We propose a novel Lipschitz-constrained Functional Gradient GANs learning (Li-CFG) method to stabilize the training of GAN.
We demonstrate that the neighborhood size of the latent vector can be reduced by increasing the norm of the discriminator gradient.
arXiv Detail & Related papers (2025-01-20T02:48:07Z) - The Polynomial Stein Discrepancy for Assessing Moment Convergence [1.0835264351334324]
We propose a novel method for measuring the discrepancy between a set of samples and a desired posterior distribution for Bayesian inference.
We show that the test has higher power than its competitors in several examples, and at a lower computational cost.
arXiv Detail & Related papers (2024-12-06T15:51:04Z) - Precise Error Rates for Computationally Efficient Testing [75.63895690909241]
We revisit the question of simple-versus-simple hypothesis testing with an eye towards computational complexity.
An existing test based on linear spectral statistics achieves the best possible tradeoff curve between type I and type II error rates.
arXiv Detail & Related papers (2023-11-01T04:41:16Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
We develop an abstention procedure via testing the hypothesis on the value of the conditional variance at a given point.
Unlike existing methods, the proposed one allows to account not only for the value of the variance itself but also for the uncertainty of the corresponding variance predictor.
arXiv Detail & Related papers (2023-09-28T13:04:11Z) - A framework for paired-sample hypothesis testing for high-dimensional
data [7.400168551191579]
We put forward the idea that scoring functions can be produced by the decision rules defined by the bisecting hyperplanes of the line segments connecting each pair of instances.
First, we estimate the bisecting hyperplanes for each pair of instances and an aggregated rule derived through the Hodges-Lehmann estimator.
arXiv Detail & Related papers (2023-09-28T09:17:11Z) - A High-dimensional Convergence Theorem for U-statistics with
Applications to Kernel-based Testing [3.469038201881982]
We prove a convergence theorem for U-statistics of degree two, where the data dimension $d$ is allowed to scale with sample size $n$.
We apply our theory to two popular kernel-based distribution tests, MMD and KSD, whose high-dimensional performance has been challenging to study.
arXiv Detail & Related papers (2023-02-11T12:49:46Z) - Sequential Permutation Testing of Random Forest Variable Importance
Measures [68.8204255655161]
It is proposed here to use sequential permutation tests and sequential p-value estimation to reduce the high computational costs associated with conventional permutation tests.
The results of simulation studies confirm that the theoretical properties of the sequential tests apply.
The numerical stability of the methods is investigated in two additional application studies.
arXiv Detail & Related papers (2022-06-02T20:16:50Z) - Adaptive, Rate-Optimal Hypothesis Testing in Nonparametric IV Models [2.07706336594149]
We propose a new adaptive hypothesis test for inequality (e.g., monotonicity, convexity) and equality (e.g., parametric, semiparametric) restrictions on a structural function in a nonparametric instrumental variables (NPIV) model.
Our test adapts to the unknown smoothness of alternative functions in the presence of unknown degree of endogeneity and unknown strength of the instruments.
arXiv Detail & Related papers (2020-06-17T01:19:13Z) - Noisy Adaptive Group Testing using Bayesian Sequential Experimental
Design [63.48989885374238]
When the infection prevalence of a disease is low, Dorfman showed 80 years ago that testing groups of people can prove more efficient than testing people individually.
Our goal in this paper is to propose new group testing algorithms that can operate in a noisy setting.
arXiv Detail & Related papers (2020-04-26T23:41:33Z) - A Kernel Stein Test for Comparing Latent Variable Models [48.32146056855925]
We propose a kernel-based nonparametric test of relative goodness of fit, where the goal is to compare two models, both of which may have unobserved latent variables.
We show that our test significantly outperforms the relative Maximum Mean Discrepancy test, which is based on samples from the models and does not exploit the latent structure.
arXiv Detail & Related papers (2019-07-01T07:46:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.