The Polynomial Stein Discrepancy for Assessing Moment Convergence
- URL: http://arxiv.org/abs/2412.05135v1
- Date: Fri, 06 Dec 2024 15:51:04 GMT
- Title: The Polynomial Stein Discrepancy for Assessing Moment Convergence
- Authors: Narayan Srinivasan, Matthew Sutton, Christopher Drovandi, Leah F South,
- Abstract summary: We propose a novel method for measuring the discrepancy between a set of samples and a desired posterior distribution for Bayesian inference.
We show that the test has higher power than its competitors in several examples, and at a lower computational cost.
- Score: 1.0835264351334324
- License:
- Abstract: We propose a novel method for measuring the discrepancy between a set of samples and a desired posterior distribution for Bayesian inference. Classical methods for assessing sample quality like the effective sample size are not appropriate for scalable Bayesian sampling algorithms, such as stochastic gradient Langevin dynamics, that are asymptotically biased. Instead, the gold standard is to use the kernel Stein Discrepancy (KSD), which is itself not scalable given its quadratic cost in the number of samples. The KSD and its faster extensions also typically suffer from the curse-of-dimensionality and can require extensive tuning. To address these limitations, we develop the polynomial Stein discrepancy (PSD) and an associated goodness-of-fit test. While the new test is not fully convergence-determining, we prove that it detects differences in the first r moments in the Bernstein-von Mises limit. We empirically show that the test has higher power than its competitors in several examples, and at a lower computational cost. Finally, we demonstrate that the PSD can assist practitioners to select hyper-parameters of Bayesian sampling algorithms more efficiently than competitors.
Related papers
- Sequential Kernelized Stein Discrepancy [34.773470589069476]
We exploit the potential boundedness of the Stein kernel at arbitrary point evaluations to define test martingales.
We prove the validity of the test, as well as an lower bound for the logarithmic growth of the wealth process under the alternative.
arXiv Detail & Related papers (2024-09-26T03:24:59Z) - Large Language Monkeys: Scaling Inference Compute with Repeated Sampling [81.34900892130929]
We explore inference compute as another axis for scaling, using the simple technique of repeatedly sampling candidate solutions from a model.
Across multiple tasks and models, we observe that coverage scales with the number of samples over four orders of magnitude.
In domains like coding and formal proofs, where answers can be automatically verified, these increases in coverage directly translate into improved performance.
arXiv Detail & Related papers (2024-07-31T17:57:25Z) - Collapsed Inference for Bayesian Deep Learning [36.1725075097107]
We introduce a novel collapsed inference scheme that performs Bayesian model averaging using collapsed samples.
A collapsed sample represents uncountably many models drawn from the approximate posterior.
Our proposed use of collapsed samples achieves a balance between scalability and accuracy.
arXiv Detail & Related papers (2023-06-16T08:34:42Z) - Detecting Adversarial Data by Probing Multiple Perturbations Using
Expected Perturbation Score [62.54911162109439]
Adversarial detection aims to determine whether a given sample is an adversarial one based on the discrepancy between natural and adversarial distributions.
We propose a new statistic called expected perturbation score (EPS), which is essentially the expected score of a sample after various perturbations.
We develop EPS-based maximum mean discrepancy (MMD) as a metric to measure the discrepancy between the test sample and natural samples.
arXiv Detail & Related papers (2023-05-25T13:14:58Z) - Using Perturbation to Improve Goodness-of-Fit Tests based on Kernelized
Stein Discrepancy [3.78967502155084]
Kernelized Stein discrepancy (KSD) is a score-based discrepancy widely used in goodness-of-fit tests.
We show theoretically and empirically that the KSD test can suffer from low power when the target and the alternative distributions have the same well-separated modes but differ in mixing proportions.
arXiv Detail & Related papers (2023-04-28T11:13:18Z) - Sequential Kernelized Independence Testing [101.22966794822084]
We design sequential kernelized independence tests inspired by kernelized dependence measures.
We demonstrate the power of our approaches on both simulated and real data.
arXiv Detail & Related papers (2022-12-14T18:08:42Z) - Efficient Aggregated Kernel Tests using Incomplete $U$-statistics [22.251118308736327]
Three proposed tests aggregate over several kernel bandwidths to detect departures from the null on various scales.
We show that our proposed linear-time aggregated tests obtain higher power than current state-of-the-art linear-time kernel tests.
arXiv Detail & Related papers (2022-06-18T12:30:06Z) - From Optimality to Robustness: Dirichlet Sampling Strategies in
Stochastic Bandits [0.0]
We study a generic Dirichlet Sampling (DS) algorithm, based on pairwise comparisons of empirical indices computed with re-sampling of the arms' observations.
We show that different variants of this strategy achieve provably optimal regret guarantees when the distributions are bounded and logarithmic regret for semi-bounded distributions with a mild quantile condition.
arXiv Detail & Related papers (2021-11-18T14:34:21Z) - Tracking disease outbreaks from sparse data with Bayesian inference [55.82986443159948]
The COVID-19 pandemic provides new motivation for estimating the empirical rate of transmission during an outbreak.
Standard methods struggle to accommodate the partial observability and sparse data common at finer scales.
We propose a Bayesian framework which accommodates partial observability in a principled manner.
arXiv Detail & Related papers (2020-09-12T20:37:33Z) - Compressing Large Sample Data for Discriminant Analysis [78.12073412066698]
We consider the computational issues due to large sample size within the discriminant analysis framework.
We propose a new compression approach for reducing the number of training samples for linear and quadratic discriminant analysis.
arXiv Detail & Related papers (2020-05-08T05:09:08Z) - The Simulator: Understanding Adaptive Sampling in the
Moderate-Confidence Regime [52.38455827779212]
We propose a novel technique for analyzing adaptive sampling called the em Simulator.
We prove the first instance-based lower bounds the top-k problem which incorporate the appropriate log-factors.
Our new analysis inspires a simple and near-optimal for the best-arm and top-k identification, the first em practical of its kind for the latter problem.
arXiv Detail & Related papers (2017-02-16T23:42:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.