論文の概要: Recognising Known Configurations of Garments For Dual-Arm Robotic
Flattening
- arxiv url: http://arxiv.org/abs/2205.00225v1
- Date: Sat, 30 Apr 2022 10:24:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-05 06:08:16.810785
- Title: Recognising Known Configurations of Garments For Dual-Arm Robotic
Flattening
- Title(参考訳): Dual-Arm Robotic Flatteningにおける衣服構成の認識
- Authors: Li Duan and Gerardo Argon-Camarasa
- Abstract要約: 衣服の「既知の構成」を認識するための効果的なロボット操作手法を提案する。
私たちのロボット操作計画は、重要な把握ポイントを見つけ、衣服を伸ばし、衣服を持ち上げるという4つの戦略を特徴としている。
- 参考スコア(独自算出の注目度): 1.713291434132985
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Robotic deformable-object manipulation is a challenge in the robotic industry
because deformable objects have complicated and various object states.
Predicting those object states and updating manipulation planning are
time-consuming and computationally expensive. In this paper, we propose an
effective robotic manipulation approach for recognising 'known configurations'
of garments with a 'Known Configuration neural Network' (KCNet) and choosing
pre-designed manipulation plans based on the recognised known configurations.
Our robotic manipulation plan features a four-action strategy: finding two
critical grasping points, stretching the garments, and lifting down the
garments. We demonstrate that our approach only needs 98 seconds on average to
flatten garments of five categories.
- Abstract(参考訳): ロボットの変形可能なオブジェクト操作は、変形可能なオブジェクトが複雑でさまざまなオブジェクト状態を持つため、ロボット産業における課題である。
これらのオブジェクト状態の予測と操作計画の更新には時間と計算コストがかかる。
本稿では,KCNet(Known Configuration Neural Network)を用いて衣服の「既知の構成」を認識し,認識された構成に基づいて事前設計された操作計画を選択するための効果的なロボット操作手法を提案する。
私たちのロボット操作計画は、重要な把握ポイントを見つけ、衣服を伸ばし、衣服を持ち上げるという4つの戦略を特徴としている。
我々は5つのカテゴリの衣服を平らにするのに平均98秒しか必要としないことを示した。
関連論文リスト
- Learning Object Properties Using Robot Proprioception via Differentiable Robot-Object Interaction [52.12746368727368]
微分可能シミュレーションは、システム識別の強力なツールとなっている。
本手法は,オブジェクト自体のデータに頼ることなく,ロボットからの情報を用いてオブジェクト特性を校正する。
低コストなロボットプラットフォームにおける本手法の有効性を実証する。
論文 参考訳(メタデータ) (2024-10-04T20:48:38Z) - SKT: Integrating State-Aware Keypoint Trajectories with Vision-Language Models for Robotic Garment Manipulation [82.61572106180705]
本稿では、視覚言語モデル(VLM)を用いて、様々な衣服カテゴリーにおけるキーポイント予測を改善する統一的なアプローチを提案する。
我々は、高度なシミュレーション技術を用いて大規模な合成データセットを作成し、大規模な実世界のデータを必要としないスケーラブルなトレーニングを可能にした。
実験結果から, VLM法はキーポイント検出精度とタスク成功率を大幅に向上させることが示された。
論文 参考訳(メタデータ) (2024-09-26T17:26:16Z) - A Survey of Embodied Learning for Object-Centric Robotic Manipulation [27.569063968870868]
オブジェクト中心のロボット操作のための身体学習は、AIの急速に発展し、挑戦的な分野である。
データ駆動機械学習とは異なり、具体化学習は環境との物理的相互作用を通じてロボット学習に焦点を当てる。
論文 参考訳(メタデータ) (2024-08-21T11:32:09Z) - ManiFoundation Model for General-Purpose Robotic Manipulation of Contact Synthesis with Arbitrary Objects and Robots [24.035706461949715]
汎用ロボットが幅広い操作タスクをこなせるようなモデルを開発する必要がある。
本研究は,汎用ロボット操作の基礎モデルを構築するための包括的枠組みを導入する。
私たちのモデルは、平均的な成功率を約90%達成します。
論文 参考訳(メタデータ) (2024-05-11T09:18:37Z) - Track2Act: Predicting Point Tracks from Internet Videos enables Generalizable Robot Manipulation [65.46610405509338]
我々は、ゼロショットロボット操作を可能にする汎用的な目標条件ポリシーを学習することを目指している。
私たちのフレームワークであるTrack2Actは、ゴールに基づいて将来のタイムステップで画像内のポイントがどのように動くかを予測する。
学習したトラック予測を残留ポリシーと組み合わせることで,多種多様な汎用ロボット操作が可能となることを示す。
論文 参考訳(メタデータ) (2024-05-02T17:56:55Z) - Polybot: Training One Policy Across Robots While Embracing Variability [70.74462430582163]
複数のロボットプラットフォームにデプロイするための単一のポリシーをトレーニングするための重要な設計決定セットを提案する。
われわれのフレームワークは、まず、手首カメラを利用して、我々のポリシーの観察空間と行動空間を具体化して調整する。
6つのタスクと3つのロボットにまたがる60時間以上のデータセットを用いて,関節の形状や大きさの異なるデータセットの評価を行った。
論文 参考訳(メタデータ) (2023-07-07T17:21:16Z) - Zero-Shot Robot Manipulation from Passive Human Videos [59.193076151832145]
我々は,人間の映像からエージェント非依存の行動表現を抽出するフレームワークを開発した。
我々の枠組みは、人間の手の動きを予測することに基づいている。
トレーニングされたモデルゼロショットを物理ロボット操作タスクにデプロイする。
論文 参考訳(メタデータ) (2023-02-03T21:39:52Z) - A Transferable Legged Mobile Manipulation Framework Based on Disturbance
Predictive Control [15.044159090957292]
四足歩行ロボットにロボットアームを装着した足の移動操作は、ロボットの性能を大幅に向上させる。
本稿では,潜在動的アダプタを用いた強化学習スキームを低レベルコントローラに組み込んだ統合フレームワーク外乱予測制御を提案する。
論文 参考訳(メタデータ) (2022-03-02T14:54:10Z) - V-MAO: Generative Modeling for Multi-Arm Manipulation of Articulated
Objects [51.79035249464852]
本稿では,音声による物体のマルチアーム操作を学習するためのフレームワークを提案する。
本フレームワークは,各ロボットアームの剛部上の接触点分布を学習する変動生成モデルを含む。
論文 参考訳(メタデータ) (2021-11-07T02:31:09Z) - In-air Knotting of Rope using Dual-Arm Robot based on Deep Learning [8.365690203298966]
深層学習に基づく双腕二本指ロボットを用いて,ロープの空中結節を成功させた。
全ての対象状態に対応する適切なロボット動作のマニュアル記述を事前に作成することは困難である。
そこで我々は,ロボットに2つの深層ニューラルネットワークを訓練し,そのセンサモデレータから収集したデータに基づいてボクノットとオーバーハンドノットを行うよう指示するモデルを構築した。
論文 参考訳(メタデータ) (2021-03-17T02:11:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。