論文の概要: Modeling Political Activism around Gun Debate via Social Media
- arxiv url: http://arxiv.org/abs/2205.00308v1
- Date: Sat, 30 Apr 2022 17:17:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-19 16:34:35.663170
- Title: Modeling Political Activism around Gun Debate via Social Media
- Title(参考訳): 銃に関する議論をソーシャルメディアでモデル化する
- Authors: Yelena Mejova, Jisun An, Gianmarco De Francisci Morales, Haewoon Kwak
- Abstract要約: 我々は、人口と個人レベルで、オフラインの政治活動の予測因子を調べるためにソーシャルメディア信号を使用する。
我々は,特にネットワーク情報が利用可能な場合,銃問題におけるユーザの姿勢を分類することが可能であることを示す。
- 参考スコア(独自算出の注目度): 16.571752603108344
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The United States have some of the highest rates of gun violence among
developed countries. Yet, there is a disagreement about the extent to which
firearms should be regulated. In this study, we employ social media signals to
examine the predictors of offline political activism, at both population and
individual level. We show that it is possible to classify the stance of users
on the gun issue, especially accurately when network information is available.
Alongside socioeconomic variables, network information such as the relative
size of the two sides of the debate is also predictive of state-level gun
policy. On individual level, we build a statistical model using network,
content, and psycho-linguistic features that predicts real-life political
action, and explore the most predictive linguistic features. Thus, we argue
that, alongside demographics and socioeconomic indicators, social media
provides useful signals in the holistic modeling of political engagement around
the gun debate.
- Abstract(参考訳): アメリカ合衆国は先進国で最も銃による暴力率が高い国である。
しかし、銃器の規制の程度については意見の相違がある。
本研究では,人口・個人レベルでのオフライン政治活動の予測因子を検討するためにソーシャルメディア信号を用いた。
我々は,特にネットワーク情報が利用可能であれば,銃問題に対するユーザのスタンスを分類することが可能であることを示す。
社会経済変数の他に、議論の両側の相対的な大きさなどのネットワーク情報は、州レベルの銃政策の予測でもある。
個人レベルでは,実生活における政治的行動を予測するネットワーク,コンテンツ,心理言語的特徴を用いた統計モデルを構築し,最も予測可能な言語的特徴を探索する。
このように、人口統計学や社会経済指標とともに、ソーシャルメディアは銃討論をめぐる政治的関与の包括的モデリングに有用なシグナルを提供すると論じる。
関連論文リスト
- Representation Bias in Political Sample Simulations with Large Language Models [54.48283690603358]
本研究は,大規模言語モデルを用いた政治サンプルのシミュレーションにおけるバイアスの同定と定量化を目的とする。
GPT-3.5-Turboモデルを用いて、米国選挙研究、ドイツ縦割り選挙研究、ズオビアオデータセット、中国家族パネル研究のデータを活用する。
論文 参考訳(メタデータ) (2024-07-16T05:52:26Z) - Into the crossfire: evaluating the use of a language model to
crowdsource gun violence reports [0.21485350418225244]
我々は、通常のポルトガル語のテキストと銃暴力の報告を区別するために、Twitterテキストで訓練された細調整BERTベースのモデルを提案する。
我々は、新たな銃暴力イベントを特定するために、ソーシャルメディアのテキストを継続的に事実チェックしているブラジルのアナリストを調査、インタビューする。
論文 参考訳(メタデータ) (2024-01-16T14:40:54Z) - Modeling Political Orientation of Social Media Posts: An Extended
Analysis [0.0]
オンラインソーシャルメディア上で政治的分極を特徴付ける機械学習モデルを開発することは、大きな課題である。
これらの課題は主に、注釈付きデータの欠如、ソーシャルメディアデータセットにおけるノイズの存在、膨大な量のデータなど、さまざまな要因に起因している。
本稿では、ソーシャルメディア投稿のラベル付けに、メディアバイアスと投稿コンテンツを活用する2つの方法を紹介する。
ソーシャルメディア投稿の政治的指向を予測することで,現在の機械学習モデルの性能向上を実証する。
論文 参考訳(メタデータ) (2023-11-21T03:34:20Z) - Decoding the Silent Majority: Inducing Belief Augmented Social Graph
with Large Language Model for Response Forecasting [74.68371461260946]
SocialSenseは、既存のソーシャルネットワーク上に信念中心のグラフを誘導するフレームワークであり、グラフベースの伝播によって社会的ダイナミクスを捉える。
本手法は,ゼロショット設定と教師あり設定の両方に対する実験的な評価において,既存の最先端技術を超えている。
論文 参考訳(メタデータ) (2023-10-20T06:17:02Z) - Quantitative Analysis of Forecasting Models:In the Aspect of Online
Political Bias [0.0]
ソーシャルメディア投稿を5つの異なる政治傾向カテゴリーに分類する手法を提案する。
我々のアプローチは、政治的イデオロギーの異なる2つのソーシャルメディアデータセット上で、既存の時系列予測モデルを活用することである。
論文 参考訳(メタデータ) (2023-09-11T16:17:24Z) - Large Language Models Can Be Used to Estimate the Latent Positions of
Politicians [3.9940425551415597]
既存の政治家の潜伏姿勢を推定するアプローチは、関連するデータが限られると失敗することが多い。
我々は、生成的大言語モデルに埋め込まれた知識を活用して、特定の政治的・政策的な側面に沿って議員の立場を測定する。
我々は、リベラル保守的イデオロギー、銃規制、中絶に関する米国上院議員の立場に関する新しい措置を見積もる。
論文 参考訳(メタデータ) (2023-03-21T17:48:00Z) - Design and analysis of tweet-based election models for the 2021 Mexican
legislative election [55.41644538483948]
選挙日前の6ヶ月の間に、1500万件の選挙関連ツイートのデータセットを使用します。
地理的属性を持つデータを用いたモデルが従来のポーリング法よりも精度と精度で選挙結果を決定することがわかった。
論文 参考訳(メタデータ) (2023-01-02T12:40:05Z) - Fast Few shot Self-attentive Semi-supervised Political Inclination
Prediction [12.472629584751509]
政策立案者やジャーナリストにとって、特定の場所にいる人々の政治的傾向を理解するために、ソーシャルメディア上でオンライン世論調査を作成することは、今やますます一般的になっている。
我々は、その目的をさらに進めるために、政治的傾き検出のための自己注意型半教師付きフレームワークを導入する。
資源制約のある設定でも,モデルは非常に効率的であることがわかった。
論文 参考訳(メタデータ) (2022-09-21T12:07:16Z) - Demographic Confounding Causes Extreme Instances of Lifestyle Politics
on Facebook [73.37786708074361]
ライフスタイル政治の最も極端な例は、人種や民族のような人口層によって高度に構築されたものである。
リベラルな関心は電気自動車、プランテッド・ペアレントフード、リベラルな風刺であり、一方最も保守的な関心は共和党や保守的なコメンテーターだった。
論文 参考訳(メタデータ) (2022-01-17T16:48:00Z) - News consumption and social media regulations policy [70.31753171707005]
我々は、ニュース消費とコンテンツ規制の間の相互作用を評価するために、反対のモデレーション手法であるTwitterとGabを強制した2つのソーシャルメディアを分析した。
以上の結果から,Twitterが追求するモデレーションの存在は,疑わしいコンテンツを著しく減少させることがわかった。
Gabに対する明確な規制の欠如は、ユーザが両方のタイプのコンテンツを扱う傾向を生じさせ、ディスカウント/エンドレスメントの振る舞いを考慮に入れた疑わしいコンテンツに対してわずかに好みを示す。
論文 参考訳(メタデータ) (2021-06-07T19:26:32Z) - Can You be More Social? Injecting Politeness and Positivity into
Task-Oriented Conversational Agents [60.27066549589362]
人間エージェントが使用する社会言語は、ユーザーの応答性の向上とタスク完了に関連しています。
このモデルは、ソーシャル言語理解要素で拡張されたシーケンスからシーケンスまでのディープラーニングアーキテクチャを使用する。
人的判断と自動言語尺度の両方を用いたコンテンツ保存と社会言語レベルの評価は,エージェントがより社会的に適切な方法でユーザの問題に対処できる応答を生成できることを示している。
論文 参考訳(メタデータ) (2020-12-29T08:22:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。