Source Domain Subset Sampling for Semi-Supervised Domain Adaptation in
Semantic Segmentation
- URL: http://arxiv.org/abs/2205.00312v2
- Date: Tue, 3 May 2022 05:48:45 GMT
- Title: Source Domain Subset Sampling for Semi-Supervised Domain Adaptation in
Semantic Segmentation
- Authors: Daehan Kim, Minseok Seo, Jinsun Park, Dong-Geol Choi
- Abstract summary: We propose source domain subset sampling (SDSS) as a new perspective of semi-supervised domain adaptation.
Our key assumption is that the entire source domain data may contain samples that are unhelpful for the adaptation.
The proposed method effectively subsamples full source data to generate a small-scale meaningful subset.
- Score: 8.588352155493453
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we introduce source domain subset sampling (SDSS) as a new
perspective of semi-supervised domain adaptation. We propose domain adaptation
by sampling and exploiting only a meaningful subset from source data for
training. Our key assumption is that the entire source domain data may contain
samples that are unhelpful for the adaptation. Therefore, the domain adaptation
can benefit from a subset of source data composed solely of helpful and
relevant samples. The proposed method effectively subsamples full source data
to generate a small-scale meaningful subset. Therefore, training time is
reduced, and performance is improved with our subsampled source data. To
further verify the scalability of our method, we construct a new dataset called
Ocean Ship, which comprises 500 real and 200K synthetic sample images with
ground-truth labels. The SDSS achieved a state-of-the-art performance when
applied on GTA5 to Cityscapes and SYNTHIA to Cityscapes public benchmark
datasets and a 9.13 mIoU improvement on our Ocean Ship dataset over a baseline
model.
Related papers
- Online Continual Domain Adaptation for Semantic Image Segmentation Using
Internal Representations [28.549418215123936]
We develop an online UDA algorithm for semantic segmentation of images that improves model generalization on unannotated domains.
We evaluate our approach on well established semantic segmentation datasets and demonstrate it compares favorably against state-of-the-art (SOTA) semantic segmentation methods.
arXiv Detail & Related papers (2024-01-02T04:48:49Z) - MADAv2: Advanced Multi-Anchor Based Active Domain Adaptation
Segmentation [98.09845149258972]
We introduce active sample selection to assist domain adaptation regarding the semantic segmentation task.
With only a little workload to manually annotate these samples, the distortion of the target-domain distribution can be effectively alleviated.
A powerful semi-supervised domain adaptation strategy is proposed to alleviate the long-tail distribution problem.
arXiv Detail & Related papers (2023-01-18T07:55:22Z) - Model-based Transfer Learning for Automatic Optical Inspection based on
domain discrepancy [9.039797705929363]
This research applies model-based TL via domain similarity to improve the overall performance and data augmentation in both target and source domains.
Our research suggests increases in the F1 score and the PR curve up to 20% compared with TL using benchmark datasets.
arXiv Detail & Related papers (2023-01-14T11:32:39Z) - One-Shot Domain Adaptive and Generalizable Semantic Segmentation with
Class-Aware Cross-Domain Transformers [96.51828911883456]
Unsupervised sim-to-real domain adaptation (UDA) for semantic segmentation aims to improve the real-world test performance of a model trained on simulated data.
Traditional UDA often assumes that there are abundant unlabeled real-world data samples available during training for the adaptation.
We explore the one-shot unsupervised sim-to-real domain adaptation (OSUDA) and generalization problem, where only one real-world data sample is available.
arXiv Detail & Related papers (2022-12-14T15:54:15Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) aims to connect the good ends of both worlds while bypassing their limitations.
DaC divides the target data into source-like and target-specific samples, where either group of samples is treated with tailored goals.
We further align the source-like domain with the target-specific samples using a memory bank-based Maximum Mean Discrepancy (MMD) loss to reduce the distribution mismatch.
arXiv Detail & Related papers (2022-11-12T09:21:49Z) - Domain Alignment Meets Fully Test-Time Adaptation [24.546705919244936]
A foundational requirement of a deployed ML model is to generalize to data drawn from a testing distribution that is different from training.
In this paper, we focus on a challenging variant of this problem, where access to the original source data is restricted.
We propose a new approach, CATTAn, that bridges UDA and FTTA, by relaxing the need to access entire source data.
arXiv Detail & Related papers (2022-07-09T03:17:19Z) - Few-Shot Adaptation of Pre-Trained Networks for Domain Shift [17.123505029637055]
Deep networks are prone to performance degradation when there is a domain shift between the source (training) data and target (test) data.
Recent test-time adaptation methods update batch normalization layers of pre-trained source models deployed in new target environments with streaming data to mitigate such performance degradation.
We propose a framework for few-shot domain adaptation to address the practical challenges of data-efficient adaptation.
arXiv Detail & Related papers (2022-05-30T16:49:59Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
Domain Adaptation aims to transfer the knowledge learned from a labeled source domain to an unlabeled target domain whose data distributions are different.
Recently, Source-Free Domain Adaptation (SFDA) has drawn much attention, which tries to tackle domain adaptation problem without using source data.
In this work, we propose a novel framework called SFDA-DE to address SFDA task via source Distribution Estimation.
arXiv Detail & Related papers (2022-04-24T12:22:19Z) - Source-Free Domain Adaptation for Semantic Segmentation [11.722728148523366]
Unsupervised Domain Adaptation (UDA) can tackle the challenge that convolutional neural network-based approaches for semantic segmentation heavily rely on the pixel-level annotated data.
We propose a source-free domain adaptation framework for semantic segmentation, namely SFDA, in which only a well-trained source model and an unlabeled target domain dataset are available for adaptation.
arXiv Detail & Related papers (2021-03-30T14:14:29Z) - BREEDS: Benchmarks for Subpopulation Shift [98.90314444545204]
We develop a methodology for assessing the robustness of models to subpopulation shift.
We leverage the class structure underlying existing datasets to control the data subpopulations that comprise the training and test distributions.
Applying this methodology to the ImageNet dataset, we create a suite of subpopulation shift benchmarks of varying granularity.
arXiv Detail & Related papers (2020-08-11T17:04:47Z) - Do We Really Need to Access the Source Data? Source Hypothesis Transfer
for Unsupervised Domain Adaptation [102.67010690592011]
Unsupervised adaptationUDA (UDA) aims to leverage the knowledge learned from a labeled source dataset to solve similar tasks in a new unlabeled domain.
Prior UDA methods typically require to access the source data when learning to adapt the model.
This work tackles a practical setting where only a trained source model is available and how we can effectively utilize such a model without source data to solve UDA problems.
arXiv Detail & Related papers (2020-02-20T03:13:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.