Neural Network Optimal Feedback Control with Guaranteed Local Stability
- URL: http://arxiv.org/abs/2205.00394v1
- Date: Sun, 1 May 2022 04:23:24 GMT
- Title: Neural Network Optimal Feedback Control with Guaranteed Local Stability
- Authors: Tenavi Nakamura-Zimmerer and Qi Gong and Wei Kang
- Abstract summary: We show that some neural network (NN) controllers with high test accuracy can fail to even locally stabilize the dynamic system.
We propose several novel NN architectures, which we show guarantee local stability while retaining the semi-global approximation capacity to learn the optimal feedback policy.
- Score: 2.8725913509167156
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent research shows that deep learning can be an effective tool for
designing optimal feedback controllers for high-dimensional nonlinear dynamic
systems. But the behavior of these neural network (NN) controllers is still not
well understood. In particular, some NNs with high test accuracy can fail to
even locally stabilize the dynamic system. To address this challenge we propose
several novel NN architectures, which we show guarantee local stability while
retaining the semi-global approximation capacity to learn the optimal feedback
policy. The proposed architectures are compared against standard NN feedback
controllers through numerical simulations of two high-dimensional nonlinear
optimal control problems (OCPs): stabilization of an unstable Burgers-type
partial differential equation (PDE), and altitude and course tracking for a six
degree-of-freedom (6DoF) unmanned aerial vehicle (UAV). The simulations
demonstrate that standard NNs can fail to stabilize the dynamics even when
trained well, while the proposed architectures are always at least locally
stable. Moreover, the proposed controllers are found to be near-optimal in
testing.
Related papers
- Stable Neighbor Denoising for Source-free Domain Adaptive Segmentation [91.83820250747935]
Pseudo-label noise is mainly contained in unstable samples in which predictions of most pixels undergo significant variations during self-training.
We introduce the Stable Neighbor Denoising (SND) approach, which effectively discovers highly correlated stable and unstable samples.
SND consistently outperforms state-of-the-art methods in various SFUDA semantic segmentation settings.
arXiv Detail & Related papers (2024-06-10T21:44:52Z) - Lyapunov-stable Neural Control for State and Output Feedback: A Novel Formulation [67.63756749551924]
Learning-based neural network (NN) control policies have shown impressive empirical performance in a wide range of tasks in robotics and control.
Lyapunov stability guarantees over the region-of-attraction (ROA) for NN controllers with nonlinear dynamical systems are challenging to obtain.
We demonstrate a new framework for learning NN controllers together with Lyapunov certificates using fast empirical falsification and strategic regularizations.
arXiv Detail & Related papers (2024-04-11T17:49:15Z) - Safety Filter Design for Neural Network Systems via Convex Optimization [35.87465363928146]
We propose a novel safety filter that relies on convex optimization to ensure safety for a neural network (NN) system.
We demonstrate the efficacy of the proposed framework numerically on a nonlinear pendulum system.
arXiv Detail & Related papers (2023-08-16T01:30:13Z) - Backward Reachability Analysis of Neural Feedback Loops: Techniques for
Linear and Nonlinear Systems [59.57462129637796]
This paper presents a backward reachability approach for safety verification of closed-loop systems with neural networks (NNs)
The presence of NNs in the feedback loop presents a unique set of problems due to the nonlinearities in their activation functions and because NN models are generally not invertible.
We present frameworks for calculating BP over-approximations for both linear and nonlinear systems with control policies represented by feedforward NNs.
arXiv Detail & Related papers (2022-09-28T13:17:28Z) - Distributed neural network control with dependability guarantees: a
compositional port-Hamiltonian approach [0.0]
Large-scale cyber-physical systems require that control policies are distributed, that is, that they only rely on local real-time measurements and communication with neighboring agents.
Recent work has proposed training Neural Network (NN) distributed controllers.
A main challenge of NN controllers is that they are not dependable during and after training, that is, the closed-loop system may be unstable, and the training may fail due to vanishing and exploding gradients.
arXiv Detail & Related papers (2021-12-16T17:37:11Z) - Neural network optimal feedback control with enhanced closed loop
stability [3.0981875303080795]
Recent research has shown that supervised learning can be an effective tool for designing optimal feedback controllers for high-dimensional nonlinear dynamic systems.
But the behavior of these neural network (NN) controllers is still not well understood.
In this paper we use numerical simulations to demonstrate that typical test accuracy metrics do not effectively capture the ability of an NN controller to stabilize a system.
arXiv Detail & Related papers (2021-09-15T17:59:20Z) - Robust Stability of Neural-Network Controlled Nonlinear Systems with
Parametric Variability [2.0199917525888895]
We develop a theory for stability and stabilizability of a class of neural-network controlled nonlinear systems.
For computing such a robust stabilizing NN controller, a stability guaranteed training (SGT) is also proposed.
arXiv Detail & Related papers (2021-09-13T05:09:30Z) - Recurrent Neural Network Controllers Synthesis with Stability Guarantees
for Partially Observed Systems [6.234005265019845]
We consider the important class of recurrent neural networks (RNN) as dynamic controllers for nonlinear uncertain partially-observed systems.
We propose a projected policy gradient method that iteratively enforces the stability conditions in the reparametrized space.
Numerical experiments show that our method learns stabilizing controllers while using fewer samples and achieving higher final performance compared with policy gradient.
arXiv Detail & Related papers (2021-09-08T18:21:56Z) - Enforcing robust control guarantees within neural network policies [76.00287474159973]
We propose a generic nonlinear control policy class, parameterized by neural networks, that enforces the same provable robustness criteria as robust control.
We demonstrate the power of this approach on several domains, improving in average-case performance over existing robust control methods and in worst-case stability over (non-robust) deep RL methods.
arXiv Detail & Related papers (2020-11-16T17:14:59Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
We propose LqgOpt, a novel reinforcement learning algorithm based on the principle of optimism in the face of uncertainty.
LqgOpt efficiently explores the system dynamics, estimates the model parameters up to their confidence interval, and deploys the controller of the most optimistic model.
arXiv Detail & Related papers (2020-03-12T19:56:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.