Provably-Stable Neural Network-Based Control of Nonlinear Systems
- URL: http://arxiv.org/abs/2502.00248v1
- Date: Sat, 01 Feb 2025 01:05:06 GMT
- Title: Provably-Stable Neural Network-Based Control of Nonlinear Systems
- Authors: Anran Li, John P. Swensen, Mehdi Hosseinzadeh,
- Abstract summary: Current literature on NN-based control lacks theoretical guarantees for stability and tracking performance.
This paper proposes a systematic and comprehensive methodology to design provably-stable NN-based control schemes for affine nonlinear systems.
- Score: 3.5000297213981653
- License:
- Abstract: In recent years, Neural Networks (NNs) have been employed to control nonlinear systems due to their potential capability in dealing with situations that might be difficult for conventional nonlinear control schemes. However, to the best of our knowledge, the current literature on NN-based control lacks theoretical guarantees for stability and tracking performance. This precludes the application of NN-based control schemes to systems where stringent stability and performance guarantees are required. To address this gap, this paper proposes a systematic and comprehensive methodology to design provably-stable NN-based control schemes for affine nonlinear systems. Rigorous analysis is provided to show that the proposed approach guarantees stability of the closed-loop system with the NN in the loop. Also, it is shown that the resulting NN-based control scheme ensures that system states asymptotically converge to a neighborhood around the desired equilibrium point, with a tunable proximity threshold. The proposed methodology is validated and evaluated via simulation studies on an inverted pendulum and experimental studies on a Parrot Bebop 2 drone.
Related papers
- Lyapunov-stable Neural Control for State and Output Feedback: A Novel Formulation [67.63756749551924]
Learning-based neural network (NN) control policies have shown impressive empirical performance in a wide range of tasks in robotics and control.
Lyapunov stability guarantees over the region-of-attraction (ROA) for NN controllers with nonlinear dynamical systems are challenging to obtain.
We demonstrate a new framework for learning NN controllers together with Lyapunov certificates using fast empirical falsification and strategic regularizations.
arXiv Detail & Related papers (2024-04-11T17:49:15Z) - Safety Filter Design for Neural Network Systems via Convex Optimization [35.87465363928146]
We propose a novel safety filter that relies on convex optimization to ensure safety for a neural network (NN) system.
We demonstrate the efficacy of the proposed framework numerically on a nonlinear pendulum system.
arXiv Detail & Related papers (2023-08-16T01:30:13Z) - Backward Reachability Analysis of Neural Feedback Loops: Techniques for
Linear and Nonlinear Systems [59.57462129637796]
This paper presents a backward reachability approach for safety verification of closed-loop systems with neural networks (NNs)
The presence of NNs in the feedback loop presents a unique set of problems due to the nonlinearities in their activation functions and because NN models are generally not invertible.
We present frameworks for calculating BP over-approximations for both linear and nonlinear systems with control policies represented by feedforward NNs.
arXiv Detail & Related papers (2022-09-28T13:17:28Z) - KCRL: Krasovskii-Constrained Reinforcement Learning with Guaranteed
Stability in Nonlinear Dynamical Systems [66.9461097311667]
We propose a model-based reinforcement learning framework with formal stability guarantees.
The proposed method learns the system dynamics up to a confidence interval using feature representation.
We show that KCRL is guaranteed to learn a stabilizing policy in a finite number of interactions with the underlying unknown system.
arXiv Detail & Related papers (2022-06-03T17:27:04Z) - Neural Network Optimal Feedback Control with Guaranteed Local Stability [2.8725913509167156]
We show that some neural network (NN) controllers with high test accuracy can fail to even locally stabilize the dynamic system.
We propose several novel NN architectures, which we show guarantee local stability while retaining the semi-global approximation capacity to learn the optimal feedback policy.
arXiv Detail & Related papers (2022-05-01T04:23:24Z) - Sparsity in Partially Controllable Linear Systems [56.142264865866636]
We study partially controllable linear dynamical systems specified by an underlying sparsity pattern.
Our results characterize those state variables which are irrelevant for optimal control.
arXiv Detail & Related papers (2021-10-12T16:41:47Z) - Neural network optimal feedback control with enhanced closed loop
stability [3.0981875303080795]
Recent research has shown that supervised learning can be an effective tool for designing optimal feedback controllers for high-dimensional nonlinear dynamic systems.
But the behavior of these neural network (NN) controllers is still not well understood.
In this paper we use numerical simulations to demonstrate that typical test accuracy metrics do not effectively capture the ability of an NN controller to stabilize a system.
arXiv Detail & Related papers (2021-09-15T17:59:20Z) - Robust Stability of Neural-Network Controlled Nonlinear Systems with
Parametric Variability [2.0199917525888895]
We develop a theory for stability and stabilizability of a class of neural-network controlled nonlinear systems.
For computing such a robust stabilizing NN controller, a stability guaranteed training (SGT) is also proposed.
arXiv Detail & Related papers (2021-09-13T05:09:30Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
We propose LqgOpt, a novel reinforcement learning algorithm based on the principle of optimism in the face of uncertainty.
LqgOpt efficiently explores the system dynamics, estimates the model parameters up to their confidence interval, and deploys the controller of the most optimistic model.
arXiv Detail & Related papers (2020-03-12T19:56:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.