論文の概要: Dataset-free Deep learning Method for Low-Dose CT Image Reconstruction
- arxiv url: http://arxiv.org/abs/2205.00463v1
- Date: Sun, 1 May 2022 13:05:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-03 16:33:55.354686
- Title: Dataset-free Deep learning Method for Low-Dose CT Image Reconstruction
- Title(参考訳): 低次元CT画像再構成のためのデータセットフリーディープラーニング法
- Authors: Qiaoqiao Ding, Hui Ji, Yuhui Quan, Xiaoqun Zhang
- Abstract要約: 本稿では,LDCT画像再構成のための教師なしディープラーニング手法を提案する。
提案手法は,ランダムな重み付きディープネットワークによるベイズ推論の再パラメータ化手法と,追加の総変分法(TV)正則化を併用して構築する。
実験の結果,提案手法は既存のデータセットのない画像再構成手法よりも顕著に優れていることがわかった。
- 参考スコア(独自算出の注目度): 33.193423488300255
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Low-dose CT (LDCT) imaging attracted a considerable interest for the
reduction of the object's exposure to X-ray radiation. In recent years,
supervised deep learning has been extensively studied for LDCT image
reconstruction, which trains a network over a dataset containing many pairs of
normal-dose and low-dose images. However, the challenge on collecting many such
pairs in the clinical setup limits the application of such
supervised-learning-based methods for LDCT image reconstruction in practice.
Aiming at addressing the challenges raised by the collection of training
dataset, this paper proposed a unsupervised deep learning method for LDCT image
reconstruction, which does not require any external training data. The proposed
method is built on a re-parametrization technique for Bayesian inference via
deep network with random weights, combined with additional total variational
(TV) regularization. The experiments show that the proposed method noticeably
outperforms existing dataset-free image reconstruction methods on the test
data.
- Abstract(参考訳): 低線量CT(LDCT)撮影は、被検体のX線被曝の低減に大きな関心を惹きつけた。
近年,LDCT画像再構成のための教師付きディープラーニングが広く研究されている。
しかし,臨床施設においてこのようなペアを多数集めることの課題は,LDCT画像再構成のための教師あり学習法の適用を制限している。
本稿では,トレーニングデータセットの収集によって生じる課題を解決することを目的として,外部のトレーニングデータを必要としないldct画像再構成のための教師なし深層学習手法を提案する。
提案手法は,ランダムな重み付きディープネットワークによるベイズ推論の再パラメータ化手法と,追加の総変分法(TV)正則化を併用して構築する。
実験により,提案手法が既存のデータセットを含まない画像再構成手法を,テストデータ上で明らかに上回ることを示した。
関連論文リスト
- CT-SDM: A Sampling Diffusion Model for Sparse-View CT Reconstruction across All Sampling Rates [16.985836345715963]
Sparse view X-ray Computed tomography は放射線線量減少を緩和する現代的手法として登場した。
深層学習を用いた最近の研究は, Sparse-View Computed Tomography (SVCT) のアーティファクトの除去に有望な進展をもたらした。
本研究では,任意のサンプリングレートで高性能SVCT再構成を実現するための適応的再構成手法を提案する。
論文 参考訳(メタデータ) (2024-09-03T03:06:15Z) - CoCPF: Coordinate-based Continuous Projection Field for Ill-Posed Inverse Problem in Imaging [78.734927709231]
スパース・ビュー・コンピュート・トモグラフィー(SVCT)の再構成は,スパース・サンプリングによるCT画像の取得を目的としている。
暗黙的な神経表現(INR)技術は、不備のため、その分野に「かなりの穴」(すなわち、未モデル化空間)を残し、準最適結果をもたらす可能性がある。
SVCT再構成のためのホールフリー表現場を構築することを目的としたコーディネート型連続射影場(CoCPF)を提案する。
論文 参考訳(メタデータ) (2024-06-21T08:38:30Z) - Partitioned Hankel-based Diffusion Models for Few-shot Low-dose CT Reconstruction [10.158713017984345]
分割ハンケル拡散(PHD)モデルを用いた低用量CT再構成法を提案する。
反復再構成段階では、反復微分方程式解法とデータ一貫性制約を併用して、取得した投影データを更新する。
その結果,PHDモデルを画像品質を維持しつつ,アーチファクトやノイズを低減し,有効かつ実用的なモデルとして検証した。
論文 参考訳(メタデータ) (2024-05-27T13:44:53Z) - Deep Radon Prior: A Fully Unsupervised Framework for Sparse-View CT
Reconstruction [6.509941446269504]
提案するフレームワークはデータセットを必要とせず、優れた解釈可能性と一般化能力を示す。
実験結果から,提案手法は画像アーチファクトを効果的に抑制しつつ,詳細な画像を生成することができることが示された。
論文 参考訳(メタデータ) (2023-12-30T04:11:08Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
改良された深層学習手法は、画像のノイズを除去する能力を示しているが、正確な地上の真実を必要とする。
畳み込みニューラルネットワーク(CNN)のトレーニングに基礎的真理を必要としないLDCTのための新しい自己教師型フレームワークを提案する。
数値および実験結果から,Sparse View を用いた N2I の再構成精度は低下しており,提案手法は異なる範囲のサンプリング角度で画像品質を向上する。
論文 参考訳(メタデータ) (2023-12-19T22:40:51Z) - Enhancing Low-dose CT Image Reconstruction by Integrating Supervised and
Unsupervised Learning [13.17680480211064]
X線CT画像再構成のためのハイブリッド教師なし学習フレームワークを提案する。
提案された各訓練ブロックは、決定論的MBIRソルバとニューラルネットワークで構成されている。
限られた訓練データを用いた低用量CT画像再構成における本学習ハイブリッドモデルの有効性を実証する。
論文 参考訳(メタデータ) (2023-11-19T20:23:59Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
深層学習に基づくニューラルネットワークを用いて,OCTの軸運動とコロナ運動のアーチファクトを1つのスキャンで補正する。
実験結果から, 提案手法は動作アーチファクトを効果的に補正し, 誤差が他の方法よりも小さいことを示す。
論文 参考訳(メタデータ) (2023-05-27T03:55:19Z) - SNAF: Sparse-view CBCT Reconstruction with Neural Attenuation Fields [71.84366290195487]
神経減衰場を学習し,スパースビューCBCT再構成のためのSNAFを提案する。
提案手法は,入力ビューが20程度しかなく,高再生品質(30以上のPSNR)で優れた性能を実現する。
論文 参考訳(メタデータ) (2022-11-30T14:51:14Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
我々は,多チャンネル畳み込み解析演算子学習法(MCAOL)を開発した。
本研究では,低エネルギー,高エネルギーで減衰画像を共同で再構成する最適化手法を提案する。
論文 参考訳(メタデータ) (2022-03-10T14:22:54Z) - Self-Supervised Training For Low Dose CT Reconstruction [0.0]
本研究は,低線量シノグラムを自身のトレーニングターゲットとして用いるためのトレーニングスキームを定義する。
ノイズが要素的に独立な射影領域に自己超越原理を適用する。
提案手法は,従来手法と圧縮方式の両方において,反復的再構成法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-10-25T22:02:14Z) - Data Consistent CT Reconstruction from Insufficient Data with Learned
Prior Images [70.13735569016752]
偽陰性病変と偽陽性病変を呈示し,CT画像再構成における深層学習の堅牢性について検討した。
本稿では,圧縮センシングと深層学習の利点を組み合わせた画像品質向上のためのデータ一貫性再構築手法を提案する。
提案手法の有効性は,円錐ビームCTにおいて,トランキャットデータ,リミテッドアングルデータ,スパースビューデータで示される。
論文 参考訳(メタデータ) (2020-05-20T13:30:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。