論文の概要: Benchmarking learned algorithms for computed tomography image reconstruction tasks
- arxiv url: http://arxiv.org/abs/2412.08350v1
- Date: Wed, 11 Dec 2024 12:45:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-12 14:03:09.871585
- Title: Benchmarking learned algorithms for computed tomography image reconstruction tasks
- Title(参考訳): CT画像再構成タスクのためのベンチマーク学習アルゴリズム
- Authors: Maximilian B. Kiss, Ander Biguri, Zakhar Shumaylov, Ferdia Sherry, K. Joost Batenburg, Carola-Bibiane Schönlieb, Felix Lucka,
- Abstract要約: 我々は,機械学習に基づくCT画像再構成アルゴリズムのベンチマークに,実世界の実験的CTデータセットである2DeteCTデータセットを使用する。
本稿では,これらの手法を後処理ネットワーク,学習/学習反復手法,学習正規化手法,プラグ・アンド・プレイ方式に分類する。
ベンチマークの結果,全データ再構成,リミテッドアングル再構成,スパースアングル再構成,低線量再構成,ビーム硬化補正といったタスクにおける各種アルゴリズムの有効性が示された。
- 参考スコア(独自算出の注目度): 8.850508171390194
- License:
- Abstract: Computed tomography (CT) is a widely used non-invasive diagnostic method in various fields, and recent advances in deep learning have led to significant progress in CT image reconstruction. However, the lack of large-scale, open-access datasets has hindered the comparison of different types of learned methods. To address this gap, we use the 2DeteCT dataset, a real-world experimental computed tomography dataset, for benchmarking machine learning based CT image reconstruction algorithms. We categorize these methods into post-processing networks, learned/unrolled iterative methods, learned regularizer methods, and plug-and-play methods, and provide a pipeline for easy implementation and evaluation. Using key performance metrics, including SSIM and PSNR, our benchmarking results showcase the effectiveness of various algorithms on tasks such as full data reconstruction, limited-angle reconstruction, sparse-angle reconstruction, low-dose reconstruction, and beam-hardening corrected reconstruction. With this benchmarking study, we provide an evaluation of a range of algorithms representative for different categories of learned reconstruction methods on a recently published dataset of real-world experimental CT measurements. The reproducible setup of methods and CT image reconstruction tasks in an open-source toolbox enables straightforward addition and comparison of new methods later on. The toolbox also provides the option to load the 2DeteCT dataset differently for extensions to other problems and different CT reconstruction tasks.
- Abstract(参考訳): CTは様々な分野で広く用いられている非侵襲的診断法であり,近年のディープラーニングの進歩はCT画像再構成に大きな進歩をもたらしている。
しかし、大規模なオープンアクセスデータセットの欠如は、異なるタイプの学習方法の比較を妨げている。
このギャップに対処するために、機械学習に基づくCT画像再構成アルゴリズムのベンチマークに、2DeteCTデータセット、実世界の実験的な計算トモグラフィーデータセットを使用する。
本稿では,これらの手法を後処理ネットワーク,学習/学習反復手法,学習正規化手法,プラグ・アンド・プレイ方式に分類し,実装と評価を容易にするパイプラインを提供する。
SSIMやPSNRなどの主要な性能指標を用いて,全データ再構成,リミテッドアングル再構成,スパースアングル再構成,低線量再構成,ビーム硬化補正といったタスクにおける各種アルゴリズムの有効性を示す。
本ベンチマークでは,最近発表された実世界実験CTのデータセットを用いて,学習された再構成手法のカテゴリ別に代表されるアルゴリズムの範囲の評価を行う。
オープンソースツールボックスにおける再現可能なメソッド設定とCT画像再構成タスクにより、後続の新しいメソッドの簡単な追加と比較が可能になる。
ツールボックスには2DeteCTデータセットを別の方法でロードするオプションも用意されている。
関連論文リスト
- AC-IND: Sparse CT reconstruction based on attenuation coefficient estimation and implicit neural distribution [12.503822675024054]
CTは産業用非破壊検査や診断において重要な役割を担っている。
スパースビューCT再構成は,少数のプロジェクションのみを使用しながら,高品質なCT像を再構成することを目的としている。
本稿では,減衰係数推定と入射ニューラル分布に基づく自己教師型手法であるAC-INDを紹介する。
論文 参考訳(メタデータ) (2024-09-11T10:34:41Z) - Enhancing Low-dose CT Image Reconstruction by Integrating Supervised and
Unsupervised Learning [13.17680480211064]
X線CT画像再構成のためのハイブリッド教師なし学習フレームワークを提案する。
提案された各訓練ブロックは、決定論的MBIRソルバとニューラルネットワークで構成されている。
限られた訓練データを用いた低用量CT画像再構成における本学習ハイブリッドモデルの有効性を実証する。
論文 参考訳(メタデータ) (2023-11-19T20:23:59Z) - Deep Unfolding of the DBFB Algorithm with Application to ROI CT Imaging
with Limited Angular Density [15.143939192429018]
本稿では,関心領域(ROI)を限定されたCT値から再構成する手法を提案する。
ディープメソッドは高速で、データセットからの情報を活用することで、高いリコンストラクション品質に達することができる。
限られたデータからのROI再構成のために設計されたUDBFBと呼ばれる展開ニューラルネットワークを導入する。
論文 参考訳(メタデータ) (2022-09-27T09:10:57Z) - Dataset-free Deep learning Method for Low-Dose CT Image Reconstruction [33.193423488300255]
本稿では,LDCT画像再構成のための教師なしディープラーニング手法を提案する。
提案手法は,ランダムな重み付きディープネットワークによるベイズ推論の再パラメータ化手法と,追加の総変分法(TV)正則化を併用して構築する。
実験の結果,提案手法は既存のデータセットのない画像再構成手法よりも顕著に優れていることがわかった。
論文 参考訳(メタデータ) (2022-05-01T13:05:04Z) - A comparison of different atmospheric turbulence simulation methods for
image restoration [64.24948495708337]
大気の乱流は、長距離イメージングシステムによって捉えられた画像の品質を悪化させる。
深層学習に基づく大気乱流緩和法が文献で提案されている。
様々な乱流シミュレーション手法が画像復元に与える影響を系統的に評価した。
論文 参考訳(メタデータ) (2022-04-19T16:21:36Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
我々は,多チャンネル畳み込み解析演算子学習法(MCAOL)を開発した。
本研究では,低エネルギー,高エネルギーで減衰画像を共同で再構成する最適化手法を提案する。
論文 参考訳(メタデータ) (2022-03-10T14:22:54Z) - Reference-based Magnetic Resonance Image Reconstruction Using Texture
Transforme [86.6394254676369]
高速MRI再構成のための新しいテクスチャトランスフォーマーモジュール(TTM)を提案する。
変換器のクエリやキーとしてアンダーサンプルのデータと参照データを定式化する。
提案したTTMは、MRIの再構成手法に積み重ねることで、その性能をさらに向上させることができる。
論文 参考訳(メタデータ) (2021-11-18T03:06:25Z) - Shared Prior Learning of Energy-Based Models for Image Reconstruction [69.72364451042922]
本研究では,地中真理データを含まないトレーニングに特化して設計された画像再構成のための新しい学習ベースフレームワークを提案する。
基底真理データがない場合には、損失関数をパッチベースのワッサーシュタイン関数に変更する。
共用事前学習では、上記の最適制御問題と正規化器の共用学習パラメータを同時に最適化する。
論文 参考訳(メタデータ) (2020-11-12T17:56:05Z) - Self-Supervised Training For Low Dose CT Reconstruction [0.0]
本研究は,低線量シノグラムを自身のトレーニングターゲットとして用いるためのトレーニングスキームを定義する。
ノイズが要素的に独立な射影領域に自己超越原理を適用する。
提案手法は,従来手法と圧縮方式の両方において,反復的再構成法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-10-25T22:02:14Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Data Consistent CT Reconstruction from Insufficient Data with Learned
Prior Images [70.13735569016752]
偽陰性病変と偽陽性病変を呈示し,CT画像再構成における深層学習の堅牢性について検討した。
本稿では,圧縮センシングと深層学習の利点を組み合わせた画像品質向上のためのデータ一貫性再構築手法を提案する。
提案手法の有効性は,円錐ビームCTにおいて,トランキャットデータ,リミテッドアングルデータ,スパースビューデータで示される。
論文 参考訳(メタデータ) (2020-05-20T13:30:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。