Dataset-free Deep learning Method for Low-Dose CT Image Reconstruction
- URL: http://arxiv.org/abs/2205.00463v1
- Date: Sun, 1 May 2022 13:05:04 GMT
- Title: Dataset-free Deep learning Method for Low-Dose CT Image Reconstruction
- Authors: Qiaoqiao Ding, Hui Ji, Yuhui Quan, Xiaoqun Zhang
- Abstract summary: This paper proposes a unsupervised deep learning method for LDCT image reconstruction.
The proposed method is built on a re-parametrization technique for Bayesian inference via deep network with random weights, combined with additional total variational (TV) regularization.
Experiments show that the proposed method noticeably outperforms existing dataset-free image reconstruction methods on the test data.
- Score: 33.193423488300255
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Low-dose CT (LDCT) imaging attracted a considerable interest for the
reduction of the object's exposure to X-ray radiation. In recent years,
supervised deep learning has been extensively studied for LDCT image
reconstruction, which trains a network over a dataset containing many pairs of
normal-dose and low-dose images. However, the challenge on collecting many such
pairs in the clinical setup limits the application of such
supervised-learning-based methods for LDCT image reconstruction in practice.
Aiming at addressing the challenges raised by the collection of training
dataset, this paper proposed a unsupervised deep learning method for LDCT image
reconstruction, which does not require any external training data. The proposed
method is built on a re-parametrization technique for Bayesian inference via
deep network with random weights, combined with additional total variational
(TV) regularization. The experiments show that the proposed method noticeably
outperforms existing dataset-free image reconstruction methods on the test
data.
Related papers
- CT-SDM: A Sampling Diffusion Model for Sparse-View CT Reconstruction across All Sampling Rates [16.985836345715963]
Sparse views X-ray computed tomography has emerged as a contemporary technique to mitigate radiation dose degradation.
Recent studies utilizing deep learning methods has made promising progress in removing artifacts for Sparse-View Computed Tomography (SVCT)
Our study proposes a adaptive reconstruction method to achieve high-performance SVCT reconstruction at any sampling rate.
arXiv Detail & Related papers (2024-09-03T03:06:15Z) - CoCPF: Coordinate-based Continuous Projection Field for Ill-Posed Inverse Problem in Imaging [78.734927709231]
Sparse-view computed tomography (SVCT) reconstruction aims to acquire CT images based on sparsely-sampled measurements.
Due to ill-posedness, implicit neural representation (INR) techniques may leave considerable holes'' (i.e., unmodeled spaces) in their fields, leading to sub-optimal results.
We propose the Coordinate-based Continuous Projection Field (CoCPF), which aims to build hole-free representation fields for SVCT reconstruction.
arXiv Detail & Related papers (2024-06-21T08:38:30Z) - Partitioned Hankel-based Diffusion Models for Few-shot Low-dose CT Reconstruction [10.158713017984345]
We propose a few-shot low-dose CT reconstruction method using Partitioned Hankel-based Diffusion (PHD) models.
In the iterative reconstruction stage, an iterative differential equation solver is employed along with data consistency constraints to update the acquired projection data.
The results approximate those of normaldose counterparts, validating PHD model as an effective and practical model for reducing artifacts and noise while preserving image quality.
arXiv Detail & Related papers (2024-05-27T13:44:53Z) - Deep Radon Prior: A Fully Unsupervised Framework for Sparse-View CT
Reconstruction [6.509941446269504]
The proposed framework requires no dataset and exhibits superior interpretability and generalization ability.
The experimental results demonstrate that the proposed method can generate detailed images while effectively suppressing image artifacts.
arXiv Detail & Related papers (2023-12-30T04:11:08Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
Supervised deep learning methods have shown the ability to remove noise in images but require accurate ground truth.
We propose a novel self-supervised framework for LDCT, in which ground truth is not required for training the convolutional neural network (CNN)
Numerical and experimental results show that the reconstruction accuracy of N2I with sparse views is degrading while the proposed rotational augmented Noise2Inverse (RAN2I) method keeps better image quality over a different range of sampling angles.
arXiv Detail & Related papers (2023-12-19T22:40:51Z) - Enhancing Low-dose CT Image Reconstruction by Integrating Supervised and
Unsupervised Learning [13.17680480211064]
We propose a hybrid supervised-unsupervised learning framework for X-ray computed tomography (CT) image reconstruction.
Each proposed trained block consists of a deterministic MBIR solver and a neural network.
We demonstrate the efficacy of this learned hybrid model for low-dose CT image reconstruction with limited training data.
arXiv Detail & Related papers (2023-11-19T20:23:59Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
We propose deep learning based neural networks to correct axial and coronal motion artifacts in OCT based on a single scan.
The experimental result shows that the proposed method can effectively correct motion artifacts and achieve smaller error than other methods.
arXiv Detail & Related papers (2023-05-27T03:55:19Z) - SNAF: Sparse-view CBCT Reconstruction with Neural Attenuation Fields [71.84366290195487]
We propose SNAF for sparse-view CBCT reconstruction by learning the neural attenuation fields.
Our approach achieves superior performance in terms of high reconstruction quality (30+ PSNR) with only 20 input views.
arXiv Detail & Related papers (2022-11-30T14:51:14Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
We develop a multi-channel convolutional analysis operator learning (MCAOL) method to exploit common spatial features within attenuation images at different energies.
We propose an optimization method which jointly reconstructs the attenuation images at low and high energies with a mixed norm regularization on the sparse features.
arXiv Detail & Related papers (2022-03-10T14:22:54Z) - Self-Supervised Training For Low Dose CT Reconstruction [0.0]
This study defines a training scheme to use low-dose sinograms as their own training targets.
We apply the self-supervision principle in the projection domain where the noise is element-wise independent.
We demonstrate that our method outperforms both conventional and compressed sensing based iterative reconstruction methods.
arXiv Detail & Related papers (2020-10-25T22:02:14Z) - Data Consistent CT Reconstruction from Insufficient Data with Learned
Prior Images [70.13735569016752]
We investigate the robustness of deep learning in CT image reconstruction by showing false negative and false positive lesion cases.
We propose a data consistent reconstruction (DCR) method to improve their image quality, which combines the advantages of compressed sensing and deep learning.
The efficacy of the proposed method is demonstrated in cone-beam CT with truncated data, limited-angle data and sparse-view data, respectively.
arXiv Detail & Related papers (2020-05-20T13:30:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.