論文の概要: Unsupervised Denoising of Optical Coherence Tomography Images with
Dual_Merged CycleWGAN
- arxiv url: http://arxiv.org/abs/2205.00698v1
- Date: Mon, 2 May 2022 07:38:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-03 14:31:51.309863
- Title: Unsupervised Denoising of Optical Coherence Tomography Images with
Dual_Merged CycleWGAN
- Title(参考訳): dual_merged cyclewganを用いた光コヒーレンス断層画像の教師なしデニュージング
- Authors: Jie Du, Xujian Yang, Kecheng Jin, Xuanzheng Qi, Hu Chen
- Abstract要約: そこで我々は,網膜CT画像復調のためのDual-Merged Cycle-WGANと呼ばれる新しいサイクル一貫性生成適応ネットを提案する。
本モデルでは,2つのCycle-GANネットワークとデクリミネータとワッセルシュタイン損失を併用して,優れたトレーニング安定性と性能を実現する。
- 参考スコア(独自算出の注目度): 3.3909577600092122
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nosie is an important cause of low quality Optical coherence tomography (OCT)
image. The neural network model based on Convolutional neural networks(CNNs)
has demonstrated its excellent performance in image denoising. However, OCT
image denoising still faces great challenges because many previous neural
network algorithms required a large number of labeled data, which might cost
much time or is expensive. Besides, these CNN-based algorithms need numerous
parameters and good tuning techniques, which is hardware resources consuming.
To solved above problems, We proposed a new Cycle-Consistent Generative
Adversarial Nets called Dual-Merged Cycle-WGAN for retinal OCT image
denoiseing, which has remarkable performance with less unlabeled traning data.
Our model consists of two Cycle-GAN networks with imporved generator,
descriminator and wasserstein loss to achieve good training stability and
better performance. Using image merge technique between two Cycle-GAN networks,
our model could obtain more detailed information and hence better training
effect. The effectiveness and generality of our proposed network has been
proved via ablation experiments and comparative experiments. Compared with
other state-of-the-art methods, our unsupervised method obtains best subjective
visual effect and higher evaluation objective indicators.
- Abstract(参考訳): nosieは低品質光コヒーレンス断層撮影(oct)の重要な原因である。
畳み込みニューラルネットワーク(CNN)に基づくニューラルネットワークモデルは、画像の雑音化において優れた性能を示した。
しかし、多くのニューラルネットワークアルゴリズムが大量のラベル付きデータを必要とするため、oct画像のノイズ処理は依然として大きな課題に直面している。
さらに、これらのCNNベースのアルゴリズムには多くのパラメータと優れたチューニング技術が必要である。
そこで本研究では, 網膜オクタ画像デノイジングのためのデュアルマージド・サイクルwganと呼ばれる, ラベルなしトレーディングデータが少なく, 優れた性能を持つ新しい循環整合型生成逆向ネットを提案する。
本モデルでは,良好なトレーニング安定性と優れた性能を実現するために,2つのサイクルガンネットワーク,descriminatorとwasserstein損失からなる。
2つのサイクロンganネットワーク間の画像マージ技術を用いて,より詳細な情報を得て,より優れたトレーニング効果を得ることができた。
提案ネットワークの有効性と汎用性は,アブレーション実験と比較実験により実証された。
他の最先端手法と比較すると,教師なし手法は最良主観的視覚効果と高い評価対象指標を得る。
関連論文リスト
- Image Blind Denoising Using Dual Convolutional Neural Network with Skip
Connection [2.9689285167236603]
我々は、スキップ接続(DCBDNet)を用いた新しい二重畳み込みブラインド復調ネットワークを提案する。
提案するDCBDNetは、雑音推定ネットワークと二重畳み込みニューラルネットワーク(CNN)から構成される。
論文 参考訳(メタデータ) (2023-04-04T08:21:46Z) - Enhancing convolutional neural network generalizability via low-rank weight approximation [6.763245393373041]
十分なノイズ処理は、画像処理にとって重要な第一歩であることが多い。
ディープニューラルネットワーク(DNN)は画像のノイズ化に広く利用されている。
本研究では,タッカー低ランクテンソル近似に基づく自己教師付き画像復調フレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-26T14:11:05Z) - Multi-stage image denoising with the wavelet transform [125.2251438120701]
深部畳み込みニューラルネットワーク(Deep Convolutional Neural Network, CNN)は、正確な構造情報を自動マイニングすることで、画像の復調に使用される。
動的畳み込みブロック(DCB)、2つのカスケードウェーブレット変換および拡張ブロック(WEB)、残留ブロック(RB)の3段階を経由した、MWDCNNによるCNNの多段階化を提案する。
論文 参考訳(メタデータ) (2022-09-26T03:28:23Z) - Practical Blind Image Denoising via Swin-Conv-UNet and Data Synthesis [148.16279746287452]
本研究では,残差畳み込み層の局所モデリング能力とスウィントランスブロックの非局所モデリング能力を組み込むスウィンコンブブロックを提案する。
トレーニングデータ合成のために,異なる種類のノイズを考慮した実用的なノイズ劣化モデルの設計を行う。
AGWN除去と実画像復号化の実験は、新しいネットワークアーキテクチャ設計が最先端の性能を達成することを実証している。
論文 参考訳(メタデータ) (2022-03-24T18:11:31Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
InDuDoNet+と呼ばれる新しい解釈可能な二重ドメインネットワークを構築し、CT画像の微細な埋め込みを行う。
異なる組織間のCT値を分析し,InDuDoNet+の事前観測ネットワークにマージすることで,その一般化性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-12-23T15:52:37Z) - Influence of image noise on crack detection performance of deep
convolutional neural networks [0.0]
深層畳み込みニューラルネットワークを用いた画像データからのひび割れの分類について多くの研究がなされている。
本稿では,画像ノイズがネットワークの精度に与える影響について検討する。
AlexNetは提案したインデックスに基づいて最も効率的なモデルに選ばれた。
論文 参考訳(メタデータ) (2021-11-03T09:08:54Z) - Sharp-GAN: Sharpness Loss Regularized GAN for Histopathology Image
Synthesis [65.47507533905188]
コンディショナル・ジェネレーショナル・ジェネレーティブ・逆境ネットワークは、合成病理像を生成するために応用されている。
そこで我々は,現実的な病理像を合成するために,シャープネスロス正則化生成対向ネットワークを提案する。
論文 参考訳(メタデータ) (2021-10-27T18:54:25Z) - Learning a Model-Driven Variational Network for Deformable Image
Registration [89.9830129923847]
VR-Netは、教師なしの変形可能な画像登録のための新しいカスケード可変ネットワークである。
登録精度において最先端のディープラーニング手法よりも優れています。
ディープラーニングの高速推論速度と変分モデルのデータ効率を維持している。
論文 参考訳(メタデータ) (2021-05-25T21:37:37Z) - Image Denoising using Attention-Residual Convolutional Neural Networks [0.0]
本稿では,学習に基づく新たな非盲検手法であるAttention Residual Convolutional Neural Network (ARCNN)を提案し,その拡張としてFlexible Attention Residual Convolutional Neural Network (FARCNN)を提案する。
ARCNNはガウス語とポアソン語で約0.44dBと0.96dBの平均PSNR結果を達成し、FARCNNはARCNNに比べて若干パフォーマンスが悪くても非常に一貫した結果を示した。
論文 参考訳(メタデータ) (2021-01-19T16:37:57Z) - Neighbor2Neighbor: Self-Supervised Denoising from Single Noisy Images [98.82804259905478]
Neighbor2Neighborを提示し、ノイズの多い画像のみで効果的な画像消音モデルをトレーニングします。
ネットワークのトレーニングに使用される入力とターゲットは、同じノイズ画像からサブサンプリングされた画像である。
デノイジングネットワークは、第1段階で生成されたサブサンプルトレーニングペアで訓練され、提案された正規化器は、より良いパフォーマンスのための追加の損失として訓練される。
論文 参考訳(メタデータ) (2021-01-08T02:03:25Z) - EDCNN: Edge enhancement-based Densely Connected Network with Compound
Loss for Low-Dose CT Denoising [27.86840312836051]
We propose the Edge enhancement based Densely connected Convolutional Neural Network (EDCNN)。
我々は、抽出したエッジ情報を融合し、エンドツーエンドの画像デノーミングを実現するために、密接な接続を持つモデルを構築した。
提案手法は,従来の低線量CT画像復調アルゴリズムと比較して,ディテールの保存やノイズの抑制に優れた性能を有する。
論文 参考訳(メタデータ) (2020-10-30T23:12:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。