論文の概要: FedDKD: Federated Learning with Decentralized Knowledge Distillation
- arxiv url: http://arxiv.org/abs/2205.00706v1
- Date: Mon, 2 May 2022 07:54:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-03 13:27:33.997066
- Title: FedDKD: Federated Learning with Decentralized Knowledge Distillation
- Title(参考訳): FedDKD: 分散知識蒸留によるフェデレーション学習
- Authors: Xinjia Li, Boyu Chen and Wenlian Lu
- Abstract要約: 分散知識蒸留法(FedDKD)を応用した新しいフェデレートラーニングフレームワークを提案する。
我々は、FedDKDが、いくつかのDKDステップにおいて、より効率的なコミュニケーションと訓練により最先端の手法よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 3.9084449541022055
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The performance of federated learning in neural networks is generally
influenced by the heterogeneity of the data distribution. For a well-performing
global model, taking a weighted average of the local models, as done by most
existing federated learning algorithms, may not guarantee consistency with
local models in the space of neural network maps. In this paper, we propose a
novel framework of federated learning equipped with the process of
decentralized knowledge distillation (FedDKD) (i.e., without data on the
server). The FedDKD introduces a module of decentralized knowledge distillation
(DKD) to distill the knowledge of the local models to train the global model by
approaching the neural network map average based on the metric of divergence
defined in the loss function, other than only averaging parameters as done in
literature. Numeric experiments on various heterogeneous datasets reveal that
FedDKD outperforms the state-of-the-art methods with more efficient
communication and training in a few DKD steps, especially on some extremely
heterogeneous datasets.
- Abstract(参考訳): ニューラルネットワークにおける連合学習の性能は、一般にデータ分布の不均一性に影響される。
優れたグローバルモデルでは、既存のほとんどのフェデレーション学習アルゴリズムのように、局所モデルの重み付けされた平均値を取ることで、ニューラルネットワークマップの空間における局所モデルとの整合性を保証することはできない。
本稿では,分散知識蒸留(FedDKD)のプロセス(すなわちサーバ上のデータを持たない)を備えた,フェデレート学習の新たな枠組みを提案する。
feddkdは、分散知識蒸留(decentralized knowledge distillation, dkd)のモジュールを導入し、ローカルモデルの知識を蒸留して、損失関数で定義された発散のメトリックに基づいて、ニューラルネットワークマップ平均に近づくことにより、大域モデルを訓練する。
様々な異種データセットに関する数値実験により、FedDKDはいくつかのDKDステップ、特に非常に異種データセットにおいて、より効率的なコミュニケーションとトレーニングにより最先端の手法よりも優れることが明らかになった。
関連論文リスト
- NTK-DFL: Enhancing Decentralized Federated Learning in Heterogeneous Settings via Neural Tangent Kernel [27.92271597111756]
Decentralized Federated Learning (DFL) は、中央サーバや生のデータ交換なしで参加者間でモデルをトレーニングするための、協調的な機械学習フレームワークである。
近年の研究では、集中型フレームワークにおけるフェデレーション学習に適用されたニューラルタンジェントカーネル(NTK)アプローチが、パフォーマンスの向上につながることが示されている。
本稿では,NTKベースの進化とモデル平均化の相乗効果を導入しながら,分散環境でクライアントモデルを訓練するためにNTKを活用するアプローチを提案する。
論文 参考訳(メタデータ) (2024-10-02T18:19:28Z) - Proximity-based Self-Federated Learning [1.0066310107046081]
本稿では,近接型自己フェデレーション学習という,新しい完全分散型フェデレーション学習戦略を提案する。
従来のアルゴリズムとは異なり、我々の手法は、地理的近接とモデル精度に基づいて、クライアントが近隣ノードとモデルを共有し、調整することを奨励する。
論文 参考訳(メタデータ) (2024-07-17T08:44:45Z) - Impact of network topology on the performance of Decentralized Federated
Learning [4.618221836001186]
分散機械学習は、インフラストラクチャの課題とプライバシの懸念に対処し、勢いを増している。
本研究では,3つのネットワークトポロジと6つのデータ分散手法を用いて,ネットワーク構造と学習性能の相互作用について検討する。
モデル集約時の希釈効果に起因する周辺ノードから中心ノードへの知識伝達の課題を強調した。
論文 参考訳(メタデータ) (2024-02-28T11:13:53Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Global Update Tracking: A Decentralized Learning Algorithm for
Heterogeneous Data [14.386062807300666]
本稿では,デバイス間のデータ分散の変化の影響を受けにくい分散学習アルゴリズムの設計に焦点をあてる。
我々は,分散学習における異種データの影響を,通信オーバーヘッドを伴わずに緩和することを目的とした,新たなトラッキングベース手法であるGUTを提案する。
提案手法は,既存手法と比較して1~6%の精度向上により,異種データの分散学習における最先端性能を実現する。
論文 参考訳(メタデータ) (2023-05-08T15:48:53Z) - FedILC: Weighted Geometric Mean and Invariant Gradient Covariance for
Federated Learning on Non-IID Data [69.0785021613868]
フェデレートラーニング(Federated Learning)とは、ローカルに計算されたパラメータの更新を、空間的に分散されたクライアントサイロからトレーニングデータに集約することで、共有サーバモデルによる学習を可能にする分散機械学習アプローチである。
本研究では, 勾配の共分散とヘッセンの幾何学的平均を利用して, シロ間およびシロ内成分の両方を捕捉するフェデレート不変学習一貫性(FedILC)アプローチを提案する。
これは医療、コンピュータビジョン、IoT(Internet of Things)といった様々な分野に関係している。
論文 参考訳(メタデータ) (2022-05-19T03:32:03Z) - Multi-Branch Deep Radial Basis Function Networks for Facial Emotion
Recognition [80.35852245488043]
放射状基底関数(RBF)ユニットによって形成された複数の分岐で拡張されたCNNベースのアーキテクチャを提案する。
RBFユニットは、中間表現を用いて類似のインスタンスで共有される局所パターンをキャプチャする。
提案手法は,提案手法の競争力を高めるためのローカル情報の導入であることを示す。
論文 参考訳(メタデータ) (2021-09-07T21:05:56Z) - Clustered Federated Learning via Generalized Total Variation
Minimization [83.26141667853057]
本研究では,分散ネットワーク構造を持つローカルデータセットの局所的(あるいはパーソナライズされた)モデルを学習するための最適化手法について検討する。
我々の主要な概念的貢献は、総変動最小化(GTV)としてフェデレーション学習を定式化することである。
私たちのアルゴリズムの主な貢献は、完全に分散化されたフェデレーション学習アルゴリズムです。
論文 参考訳(メタデータ) (2021-05-26T18:07:19Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
ディープラーニングモデルの分散トレーニングは、ネットワーク上でデータプライバシとデバイス上での学習を可能にする重要な要素である。
現実的な学習シナリオでは、異なるクライアントのローカルデータセットに異質性が存在することが最適化の課題となる。
本稿では,この分散学習の難しさを軽減するために,運動量に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2021-02-09T11:27:14Z) - Decentralized Federated Learning via Mutual Knowledge Transfer [37.5341683644709]
分散型連合学習(DFL)は、モノのインターネット(IoT)システムにおける問題です。
現地のクライアントが学習した知識を相互に転送することでモデルを融合させる相互知識伝達(Def-KT)アルゴリズムを提案します。
MNIST, Fashion-MNIST, CIFAR10データセットに対する実験により,提案アルゴリズムがベースラインDFL法を著しく上回るデータセットを明らかにした。
論文 参考訳(メタデータ) (2020-12-24T01:43:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。