論文の概要: Global Update Tracking: A Decentralized Learning Algorithm for
Heterogeneous Data
- arxiv url: http://arxiv.org/abs/2305.04792v1
- Date: Mon, 8 May 2023 15:48:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-09 13:51:20.213528
- Title: Global Update Tracking: A Decentralized Learning Algorithm for
Heterogeneous Data
- Title(参考訳): Global Update Tracking: 異種データのための分散学習アルゴリズム
- Authors: Sai Aparna Aketi, Abolfazl Hashemi, Kaushik Roy
- Abstract要約: 本稿では,デバイス間のデータ分散の変化の影響を受けにくい分散学習アルゴリズムの設計に焦点をあてる。
我々は,分散学習における異種データの影響を,通信オーバーヘッドを伴わずに緩和することを目的とした,新たなトラッキングベース手法であるGUTを提案する。
提案手法は,既存手法と比較して1~6%の精度向上により,異種データの分散学習における最先端性能を実現する。
- 参考スコア(独自算出の注目度): 14.386062807300666
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Decentralized learning enables the training of deep learning models over
large distributed datasets generated at different locations, without the need
for a central server. However, in practical scenarios, the data distribution
across these devices can be significantly different, leading to a degradation
in model performance. In this paper, we focus on designing a decentralized
learning algorithm that is less susceptible to variations in data distribution
across devices. We propose Global Update Tracking (GUT), a novel tracking-based
method that aims to mitigate the impact of heterogeneous data in decentralized
learning without introducing any communication overhead. We demonstrate the
effectiveness of the proposed technique through an exhaustive set of
experiments on various Computer Vision datasets (CIFAR-10, CIFAR-100, Fashion
MNIST, and ImageNette), model architectures, and network topologies. Our
experiments show that the proposed method achieves state-of-the-art performance
for decentralized learning on heterogeneous data via a $1-6\%$ improvement in
test accuracy compared to other existing techniques.
- Abstract(参考訳): 分散学習は、中央サーバを必要とせずに、異なる場所で生成された大規模分散データセット上でディープラーニングモデルのトレーニングを可能にする。
しかし、現実的なシナリオでは、これらのデバイス間でのデータ分散は大きく異なり、モデルの性能が低下する。
本稿では,デバイス間のデータ分散の変化の影響を受けにくい分散学習アルゴリズムの設計に焦点をあてる。
本稿では,分散学習における異種データの影響を軽減することを目的とした,新たな追跡ベース手法であるグローバル更新追跡(gut)を提案する。
提案手法は,様々なコンピュータビジョンデータセット (cifar-10, cifar-100, fashion mnist, imagenette) ,モデルアーキテクチャ,ネットワークトポロジ上で徹底的に実験を行い,その効果を示す。
提案手法は,既存の手法と比較して,テスト精度が1~6ドル向上することで,異種データを用いた分散学習の最先端性能を実現することを示す。
関連論文リスト
- NTK-DFL: Enhancing Decentralized Federated Learning in Heterogeneous Settings via Neural Tangent Kernel [27.92271597111756]
Decentralized Federated Learning (DFL) は、中央サーバや生のデータ交換なしで参加者間でモデルをトレーニングするための、協調的な機械学習フレームワークである。
近年の研究では、集中型フレームワークにおけるフェデレーション学習に適用されたニューラルタンジェントカーネル(NTK)アプローチが、パフォーマンスの向上につながることが示されている。
本稿では,NTKベースの進化とモデル平均化の相乗効果を導入しながら,分散環境でクライアントモデルを訓練するためにNTKを活用するアプローチを提案する。
論文 参考訳(メタデータ) (2024-10-02T18:19:28Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Cross-feature Contrastive Loss for Decentralized Deep Learning on
Heterogeneous Data [8.946847190099206]
異種データに基づく分散学習のための新しい手法を提案する。
一対の隣接するエージェントのクロスフィーチャーは、他のエージェントのモデルパラメータに関するエージェントのデータから得られる特徴である。
実験の結果,提案手法は異種データを用いた分散学習手法に比べて性能(テスト精度が0.2~4%向上)が優れていることがわかった。
論文 参考訳(メタデータ) (2023-10-24T14:48:23Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
ソースフリードメイン適応(source-free domain adapt, SFDA)は、ソースデータセットにアクセスすることなく、十分にトレーニングされたソースモデルを未学習のターゲットドメインに適応することを目的としている。
既存のSFDAメソッドは、ターゲットのトレーニングセット上で適用されたモデルを評価し、目に見えないが同一の分散テストセットからデータを無視する。
より一般化可能なSFDA法を開発するための整合正則化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:45:53Z) - Does Decentralized Learning with Non-IID Unlabeled Data Benefit from
Self Supervision? [51.00034621304361]
自己教師型学習(SSL)のレンズによるラベルなしデータによる分散学習の研究
本研究では,分散学習環境下でのコントラスト学習アルゴリズムの有効性について検討する。
論文 参考訳(メタデータ) (2022-10-20T01:32:41Z) - FedDKD: Federated Learning with Decentralized Knowledge Distillation [3.9084449541022055]
分散知識蒸留法(FedDKD)を応用した新しいフェデレートラーニングフレームワークを提案する。
我々は、FedDKDが、いくつかのDKDステップにおいて、より効率的なコミュニケーションと訓練により最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-05-02T07:54:07Z) - Cross-Gradient Aggregation for Decentralized Learning from Non-IID data [34.23789472226752]
分散学習により、コラボレーションエージェントのグループは、中央パラメータサーバーを必要とせずに、分散データセットを使用してモデルを学ぶことができる。
本稿では,新たな分散学習アルゴリズムであるクロスグラディエント・アグリゲーション(CGA)を提案する。
既存の最先端の分散学習アルゴリズムよりも優れたCGA学習性能を示す。
論文 参考訳(メタデータ) (2021-03-02T21:58:12Z) - Reinforcement Learning for Datacenter Congestion Control [50.225885814524304]
渋滞制御アルゴリズムの成功は、レイテンシとネットワーク全体のスループットを劇的に改善する。
今日まで、このような学習ベースのアルゴリズムはこの領域で実用的な可能性を示さなかった。
実世界のデータセンターネットワークの様々な構成に一般化することを目的としたRLに基づくアルゴリズムを考案する。
本稿では,この手法が他のRL手法よりも優れており,トレーニング中に見られなかったシナリオに一般化可能であることを示す。
論文 参考訳(メタデータ) (2021-02-18T13:49:28Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
ディープラーニングモデルの分散トレーニングは、ネットワーク上でデータプライバシとデバイス上での学習を可能にする重要な要素である。
現実的な学習シナリオでは、異なるクライアントのローカルデータセットに異質性が存在することが最適化の課題となる。
本稿では,この分散学習の難しさを軽減するために,運動量に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2021-02-09T11:27:14Z) - Multi-Center Federated Learning [62.57229809407692]
本稿では,フェデレート学習のための新しい多中心集約機構を提案する。
非IIDユーザデータから複数のグローバルモデルを学び、同時にユーザとセンタ間の最適なマッチングを導出する。
ベンチマークデータセットによる実験結果から,本手法はいくつかの一般的なフェデレーション学習法より優れていることが示された。
論文 参考訳(メタデータ) (2020-05-03T09:14:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。