Global Update Tracking: A Decentralized Learning Algorithm for
Heterogeneous Data
- URL: http://arxiv.org/abs/2305.04792v1
- Date: Mon, 8 May 2023 15:48:53 GMT
- Title: Global Update Tracking: A Decentralized Learning Algorithm for
Heterogeneous Data
- Authors: Sai Aparna Aketi, Abolfazl Hashemi, Kaushik Roy
- Abstract summary: In this paper, we focus on designing a decentralized learning algorithm that is less susceptible to variations in data distribution across devices.
We propose Global Update Tracking (GUT), a novel tracking-based method that aims to mitigate the impact of heterogeneous data in decentralized learning without introducing any communication overhead.
Our experiments show that the proposed method achieves state-of-the-art performance for decentralized learning on heterogeneous data via a $1-6%$ improvement in test accuracy compared to other existing techniques.
- Score: 14.386062807300666
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Decentralized learning enables the training of deep learning models over
large distributed datasets generated at different locations, without the need
for a central server. However, in practical scenarios, the data distribution
across these devices can be significantly different, leading to a degradation
in model performance. In this paper, we focus on designing a decentralized
learning algorithm that is less susceptible to variations in data distribution
across devices. We propose Global Update Tracking (GUT), a novel tracking-based
method that aims to mitigate the impact of heterogeneous data in decentralized
learning without introducing any communication overhead. We demonstrate the
effectiveness of the proposed technique through an exhaustive set of
experiments on various Computer Vision datasets (CIFAR-10, CIFAR-100, Fashion
MNIST, and ImageNette), model architectures, and network topologies. Our
experiments show that the proposed method achieves state-of-the-art performance
for decentralized learning on heterogeneous data via a $1-6\%$ improvement in
test accuracy compared to other existing techniques.
Related papers
- NTK-DFL: Enhancing Decentralized Federated Learning in Heterogeneous Settings via Neural Tangent Kernel [27.92271597111756]
Decentralized federated learning (DFL) is a collaborative machine learning framework for training a model across participants without a central server or raw data exchange.
Recent work has shown that the neural tangent kernel (NTK) approach, when applied to federated learning in a centralized framework, can lead to improved performance.
We propose an approach leveraging the NTK to train client models in the decentralized setting, while introducing a synergy between NTK-based evolution and model averaging.
arXiv Detail & Related papers (2024-10-02T18:19:28Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Cross-feature Contrastive Loss for Decentralized Deep Learning on
Heterogeneous Data [8.946847190099206]
We present a novel approach for decentralized learning on heterogeneous data.
Cross-features for a pair of neighboring agents are the features obtained from the data of an agent with respect to the model parameters of the other agent.
Our experiments show that the proposed method achieves superior performance (0.2-4% improvement in test accuracy) compared to other existing techniques for decentralized learning on heterogeneous data.
arXiv Detail & Related papers (2023-10-24T14:48:23Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - Does Decentralized Learning with Non-IID Unlabeled Data Benefit from
Self Supervision? [51.00034621304361]
We study decentralized learning with unlabeled data through the lens of self-supervised learning (SSL)
We study the effectiveness of contrastive learning algorithms under decentralized learning settings.
arXiv Detail & Related papers (2022-10-20T01:32:41Z) - FedDKD: Federated Learning with Decentralized Knowledge Distillation [3.9084449541022055]
We propose a novel framework of federated learning equipped with the process of decentralized knowledge distillation (FedDKD)
We show that FedDKD outperforms the state-of-the-art methods with more efficient communication and training in a few DKD steps.
arXiv Detail & Related papers (2022-05-02T07:54:07Z) - Cross-Gradient Aggregation for Decentralized Learning from Non-IID data [34.23789472226752]
Decentralized learning enables a group of collaborative agents to learn models using a distributed dataset without the need for a central parameter server.
We propose Cross-Gradient Aggregation (CGA), a novel decentralized learning algorithm.
We show superior learning performance of CGA over existing state-of-the-art decentralized learning algorithms.
arXiv Detail & Related papers (2021-03-02T21:58:12Z) - Reinforcement Learning for Datacenter Congestion Control [50.225885814524304]
Successful congestion control algorithms can dramatically improve latency and overall network throughput.
Until today, no such learning-based algorithms have shown practical potential in this domain.
We devise an RL-based algorithm with the aim of generalizing to different configurations of real-world datacenter networks.
We show that this scheme outperforms alternative popular RL approaches, and generalizes to scenarios that were not seen during training.
arXiv Detail & Related papers (2021-02-18T13:49:28Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
Decentralized training of deep learning models is a key element for enabling data privacy and on-device learning over networks.
In realistic learning scenarios, the presence of heterogeneity across different clients' local datasets poses an optimization challenge.
We propose a novel momentum-based method to mitigate this decentralized training difficulty.
arXiv Detail & Related papers (2021-02-09T11:27:14Z) - Multi-Center Federated Learning [62.57229809407692]
This paper proposes a novel multi-center aggregation mechanism for federated learning.
It learns multiple global models from the non-IID user data and simultaneously derives the optimal matching between users and centers.
Our experimental results on benchmark datasets show that our method outperforms several popular federated learning methods.
arXiv Detail & Related papers (2020-05-03T09:14:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.