論文の概要: Gradient Descent, Stochastic Optimization, and Other Tales
- arxiv url: http://arxiv.org/abs/2205.00832v1
- Date: Mon, 2 May 2022 12:06:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-03 18:39:03.430739
- Title: Gradient Descent, Stochastic Optimization, and Other Tales
- Title(参考訳): 緩やかな輝き, 確率最適化, その他の物語
- Authors: Jun Lu
- Abstract要約: このチュートリアルは、勾配降下法と最適化法の形式的側面と非公式な側面の両方に対処することを避けない。
勾配降下は最適化を行う最も一般的なアルゴリズムの1つであり、機械学習タスクを最適化する最も一般的な方法である。
ディープニューラルネットワークでは、計算資源を節約し、サドルポイントから逃れるために、1つのサンプルまたはサンプルのバッチが続く勾配が使用される。
- 参考スコア(独自算出の注目度): 4.913248451323163
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The goal of this paper is to debunk and dispel the magic behind black-box
optimizers and stochastic optimizers. It aims to build a solid foundation on
how and why the techniques work. This manuscript crystallizes this knowledge by
deriving from simple intuitions, the mathematics behind the strategies. This
tutorial doesn't shy away from addressing both the formal and informal aspects
of gradient descent and stochastic optimization methods. By doing so, it hopes
to provide readers with a deeper understanding of these techniques as well as
the when, the how and the why of applying these algorithms.
Gradient descent is one of the most popular algorithms to perform
optimization and by far the most common way to optimize machine learning tasks.
Its stochastic version receives attention in recent years, and this is
particularly true for optimizing deep neural networks. In deep neural networks,
the gradient followed by a single sample or a batch of samples is employed to
save computational resources and escape from saddle points. In 1951, Robbins
and Monro published \textit{A stochastic approximation method}, one of the
first modern treatments on stochastic optimization that estimates local
gradients with a new batch of samples. And now, stochastic optimization has
become a core technology in machine learning, largely due to the development of
the back propagation algorithm in fitting a neural network. The sole aim of
this article is to give a self-contained introduction to concepts and
mathematical tools in gradient descent and stochastic optimization.
- Abstract(参考訳): 本論文の目的は,ブラックボックスオプティマイザと確率オプティマイザの背後にある魔法を解き放つことである。
テクニックの動作方法と理由に関する強固な基盤を構築することを目的としています。
この写本は、戦略の背後にある数学である単純な直観からこの知識を結晶化する。
このチュートリアルは、勾配降下法と確率最適化法の形式的側面と非公式な側面の両方に対処することを避けない。
そうすることで、読者はこれらの技術についてより深く理解し、いつ、どのように、なぜアルゴリズムを適用するのかを理解できるようになる。
勾配降下は最適化を行う最も一般的なアルゴリズムの1つであり、機械学習タスクを最適化する最も一般的な方法である。
その確率的バージョンは近年注目を集めており、ディープニューラルネットワークの最適化には特に当てはまります。
ディープニューラルネットワークでは、計算資源を節約し、サドルポイントから逃れるために、1つのサンプルまたはサンプルのバッチが続く勾配を用いる。
1951年、robbins と monro は、新しいサンプルのバッチで局所勾配を推定する確率的最適化に関する最初の近代的手法である \textit{a stochastic approximation method} を発表した。
そして今や、確率的最適化は、主にニューラルネットワークに適合するバックプロパゲーションアルゴリズムの開発によって、機械学習のコア技術となっている。
この記事の唯一の目的は、勾配降下と確率最適化における概念と数学的ツールの自己完結した紹介を提供することです。
関連論文リスト
- Neural Gradient Learning and Optimization for Oriented Point Normal
Estimation [53.611206368815125]
本研究では,3次元点雲から勾配ベクトルを一貫した向きで学習し,正規推定を行うためのディープラーニング手法を提案する。
局所平面幾何に基づいて角距離場を学習し、粗勾配ベクトルを洗練する。
本手法は,局所特徴記述の精度と能力の一般化を図りながら,グローバル勾配近似を効率的に行う。
論文 参考訳(メタデータ) (2023-09-17T08:35:11Z) - Learning the Positions in CountSketch [49.57951567374372]
本稿では,まずランダムなスケッチ行列に乗じてデータを圧縮し,最適化問題を高速に解くスケッチアルゴリズムについて検討する。
本研究では,ゼロでないエントリの位置を最適化する学習ベースアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-11T07:28:35Z) - A Particle-based Sparse Gaussian Process Optimizer [5.672919245950197]
本稿では,下降の動的過程を利用した新しいスワム・スワムベースのフレームワークを提案する。
このアプローチの最大の利点は、降下を決定する前に現在の状態についてより深い探索を行うことである。
論文 参考訳(メタデータ) (2022-11-26T09:06:15Z) - Learning to Optimize Quasi-Newton Methods [22.504971951262004]
本稿では、最適化時に最適な事前条件をオンラインで学習するLODOと呼ばれる新しい機械学習を提案する。
他のL2Oメソッドとは異なり、LODOはトレーニングタスクの配布にメタトレーニングを一切必要としない。
この勾配は, 雑音場における逆 Hessian を近似し, 幅広い逆 Hessian を表現可能であることを示す。
論文 参考訳(メタデータ) (2022-10-11T03:47:14Z) - On the efficiency of Stochastic Quasi-Newton Methods for Deep Learning [0.0]
深部記憶ネットワークのための準ニュートン学習アルゴリズムの動作について検討する。
準ニュートンは効率が良く、よく知られたAdamの1次実行よりも性能が優れていることを示す。
論文 参考訳(メタデータ) (2022-05-18T20:53:58Z) - Joint inference and input optimization in equilibrium networks [68.63726855991052]
ディープ均衡モデル(Deep equilibrium model)は、従来のネットワークの深さを予測し、代わりに単一の非線形層の固定点を見つけることによってネットワークの出力を計算するモデルのクラスである。
この2つの設定の間には自然なシナジーがあることが示されています。
この戦略は、生成モデルのトレーニングや、潜時符号の最適化、デノベートやインペインティングといった逆問題に対するトレーニングモデル、対逆トレーニング、勾配に基づくメタラーニングなど、様々なタスクにおいて実証される。
論文 参考訳(メタデータ) (2021-11-25T19:59:33Z) - SHINE: SHaring the INverse Estimate from the forward pass for bi-level
optimization and implicit models [15.541264326378366]
近年,深層ニューラルネットワークの深度を高める手法として暗黙の深度学習が登場している。
トレーニングは双レベル問題として実行され、その計算複雑性は巨大なヤコビ行列の反復反転によって部分的に駆動される。
本稿では,この計算ボトルネックに対処する新たな手法を提案する。
論文 参考訳(メタデータ) (2021-06-01T15:07:34Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
この作業は、一階情報を必要としない零次最適化(ZO)の反復である。
座標重要度サンプリングにおける優雅な設計により,ZO最適化法は複雑度と関数クエリコストの両面において効率的であることを示す。
論文 参考訳(メタデータ) (2020-12-21T17:29:58Z) - A Primer on Zeroth-Order Optimization in Signal Processing and Machine
Learning [95.85269649177336]
ZO最適化は、勾配推定、降下方向、ソリューション更新の3つの主要なステップを反復的に実行する。
我々は,ブラックボックス深層学習モデルによる説明文の評価や生成,効率的なオンラインセンサ管理など,ZO最適化の有望な応用を実証する。
論文 参考訳(メタデータ) (2020-06-11T06:50:35Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
適応アルゴリズムは勾配の歴史を用いて勾配を更新し、深層ニューラルネットワークのトレーニングにおいてユビキタスである。
本稿では,非コンケーブ最小値問題に対するOptimisticOAアルゴリズムの変種を解析する。
実験の結果,適応型GAN非適応勾配アルゴリズムは経験的に観測可能であることがわかった。
論文 参考訳(メタデータ) (2019-12-26T22:10:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。