Deep Learning: From Basics to Building Deep Neural Networks with Python
- URL: http://arxiv.org/abs/2205.01069v1
- Date: Fri, 22 Apr 2022 11:57:19 GMT
- Title: Deep Learning: From Basics to Building Deep Neural Networks with Python
- Authors: Milad Vazan
- Abstract summary: This book is intended for beginners who have no familiarity with deep learning.
Our only expectation from readers is that they already have the basic programming skills in Python.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This book is intended for beginners who have no familiarity with deep
learning. Our only expectation from readers is that they already have the basic
programming skills in Python.
Related papers
- Deep Learning and Machine Learning -- Python Data Structures and Mathematics Fundamental: From Theory to Practice [17.571124565519263]
Book bridges the gap between theoretical mathematics and practical application, focusing on Python.
Includes basic and advanced Python programming, fundamental mathematical operations, matrix operations, linear algebra, and optimization techniques.
Designed for both beginners and advanced learners, the book emphasizes the critical role of mathematical principles in developing scalable AI solutions.
arXiv Detail & Related papers (2024-10-22T06:55:53Z) - Deep Learning with CNNs: A Compact Holistic Tutorial with Focus on Supervised Regression (Preprint) [0.0]
This tutorial focuses on Convolutional Neural Networks (CNNs) and supervised regression.
It not only summarizes the most relevant concepts but also provides an in-depth exploration of each, offering a complete yet agile set of ideas.
We aim for this tutorial to serve as an optimal resource for students, professors, and anyone interested in understanding the foundations of Deep Learning.
arXiv Detail & Related papers (2024-08-22T11:34:34Z) - Towards Identifying Code Proficiency through the Analysis of Python Textbooks [7.381102801726683]
The aim is to gauge the level of proficiency a developer must have to understand a piece of source code.
Prior attempts, which relied heavily on expert opinions and developer surveys, have led to considerable discrepancies.
This paper presents a new approach to identifying Python competency levels through the systematic analysis of introductory Python programming textbooks.
arXiv Detail & Related papers (2024-08-05T06:37:10Z) - Causal-learn: Causal Discovery in Python [53.17423883919072]
Causal discovery aims at revealing causal relations from observational data.
$textitcausal-learn$ is an open-source Python library for causal discovery.
arXiv Detail & Related papers (2023-07-31T05:00:35Z) - Continual Inference: A Library for Efficient Online Inference with Deep
Neural Networks in PyTorch [97.03321382630975]
Continual Inference is a Python library for implementing Continual Inference Networks (CINs) in PyTorch.
We offer a comprehensive introduction to CINs and their implementation in practice, and provide best-practices and code examples for composing complex modules for modern Deep Learning.
arXiv Detail & Related papers (2022-04-07T13:03:09Z) - DeepAL: Deep Active Learning in Python [0.16317061277456998]
DeepAL is a Python library that implements several common strategies for active learning.
DeepAL is open-source on Github and welcome any contribution.
arXiv Detail & Related papers (2021-11-30T10:17:58Z) - Dive into Deep Learning [119.30375933463156]
The book is drafted in Jupyter notebooks, seamlessly integrating exposition figures, math, and interactive examples with self-contained code.
Our goal is to offer a resource that could (i) be freely available for everyone; (ii) offer sufficient technical depth to provide a starting point on the path to becoming an applied machine learning scientist; (iii) include runnable code, showing readers how to solve problems in practice; (iv) allow for rapid updates, both by us and also by the community at large.
arXiv Detail & Related papers (2021-06-21T18:19:46Z) - Ten Quick Tips for Deep Learning in Biology [116.78436313026478]
Machine learning is concerned with the development and applications of algorithms that can recognize patterns in data and use them for predictive modeling.
Deep learning has become its own subfield of machine learning.
In the context of biological research, deep learning has been increasingly used to derive novel insights from high-dimensional biological data.
arXiv Detail & Related papers (2021-05-29T21:02:44Z) - Applications of Deep Neural Networks with Keras [0.0]
Deep learning allows a neural network to learn hierarchies of information in a way that is like the function of the human brain.
This course will introduce the student to classic neural network structures, Conversa Neural Networks (CNN), Long Short-Term Memory (LSTM), Gated Recurrent Neural Networks (GRU), General Adrial Networks (GAN)
arXiv Detail & Related papers (2020-09-11T22:09:10Z) - On the distance between two neural networks and the stability of
learning [59.62047284234815]
This paper relates parameter distance to gradient breakdown for a broad class of nonlinear compositional functions.
The analysis leads to a new distance function called deep relative trust and a descent lemma for neural networks.
arXiv Detail & Related papers (2020-02-09T19:18:39Z) - Deep Learning for MIR Tutorial [68.8204255655161]
The tutorial covers a wide range of MIR relevant deep learning approaches.
textbfConvolutional Neural Networks are currently a de-facto standard for deep learning based audio retrieval.
textbfSiamese Networks have been shown effective in learning audio representations and distance functions specific for music similarity retrieval.
arXiv Detail & Related papers (2020-01-15T12:23:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.