論文の概要: SELC: Self-Ensemble Label Correction Improves Learning with Noisy Labels
- arxiv url: http://arxiv.org/abs/2205.01156v1
- Date: Mon, 2 May 2022 18:42:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-04 13:43:23.308707
- Title: SELC: Self-Ensemble Label Correction Improves Learning with Noisy Labels
- Title(参考訳): SELC: ノイズラベルによる学習を改善する自己組織化ラベル補正
- Authors: Yangdi Lu, Wenbo He
- Abstract要約: ディープニューラルネットワークはノイズラベルを過度に適合させる傾向があり、結果として一般化性能は低下する。
ノイズラベルを段階的に補正し,モデルを改良する自己アンサンブルラベル補正法(SELC)を提案する。
SELCは、クラス条件、インスタンス依存、および実世界のラベルノイズの存在において、より有望で安定した結果を得る。
- 参考スコア(独自算出の注目度): 4.876988315151037
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks are prone to overfitting noisy labels, resulting in poor
generalization performance. To overcome this problem, we present a simple and
effective method self-ensemble label correction (SELC) to progressively correct
noisy labels and refine the model. We look deeper into the memorization
behavior in training with noisy labels and observe that the network outputs are
reliable in the early stage. To retain this reliable knowledge, SELC uses
ensemble predictions formed by an exponential moving average of network outputs
to update the original noisy labels. We show that training with SELC refines
the model by gradually reducing supervision from noisy labels and increasing
supervision from ensemble predictions. Despite its simplicity, compared with
many state-of-the-art methods, SELC obtains more promising and stable results
in the presence of class-conditional, instance-dependent, and real-world label
noise. The code is available at https://github.com/MacLLL/SELC.
- Abstract(参考訳): ディープニューラルネットワークはノイズラベルをオーバーフィットしやすいため、一般化性能が低下する。
そこで本研究では,ノイズラベルを段階的に補正し,モデルを洗練するために,単純かつ効果的な自己センブルラベル補正法(selc)を提案する。
ノイズラベルを用いたトレーニングにおける記憶挙動を深く調べ,ネットワーク出力が早期に信頼性が高いことを観察する。
この信頼できる知識を維持するために、selcは、ネットワーク出力の指数関数的移動平均によって形成されたアンサンブル予測を使用して、元のノイズラベルを更新する。
selcによるトレーニングは,ノイズラベルからの監視を徐々に削減し,アンサンブル予測からの監視を増大させることにより,モデルを洗練することを示す。
その単純さにもかかわらず、多くの最先端手法と比較して、SELCは、クラス条件、インスタンス依存、実世界のラベルノイズの存在において、より有望で安定した結果を得る。
コードはhttps://github.com/MacLLL/SELCで入手できる。
関連論文リスト
- ERASE: Error-Resilient Representation Learning on Graphs for Label Noise
Tolerance [53.73316938815873]
本稿では, ERASE (Error-Resilient representation learning on graphs for lAbel noiSe tolerancE) という手法を提案する。
ERASEは、プロトタイプの擬似ラベルとプロパゲーションされた識別ラベルを組み合わせて、表現をエラーレジリエンスで更新する。
提案手法は, 広い雑音レベルにおいて, 複数のベースラインをクリアマージンで上回り, 高いスケーラビリティを享受できる。
論文 参考訳(メタデータ) (2023-12-13T17:59:07Z) - Label-Retrieval-Augmented Diffusion Models for Learning from Noisy
Labels [61.97359362447732]
ノイズの多いラベルからの学習は、実際のアプリケーションのための機械学習において、重要かつ長年にわたる問題である。
本稿では,生成モデルの観点からラベルノイズ問題を再構成する。
我々のモデルは、標準的な実世界のベンチマークデータセットで新しいSOTA(State-of-the-art)結果を達成する。
論文 参考訳(メタデータ) (2023-05-31T03:01:36Z) - BadLabel: A Robust Perspective on Evaluating and Enhancing Label-noise
Learning [113.8799653759137]
我々はBadLabelと呼ばれる新しいラベルノイズタイプを導入し、既存のLNLアルゴリズムの性能を大幅に劣化させることができる。
BadLabelは、標準分類に対するラベルフライング攻撃に基づいて開発されている。
そこで本稿では, 各エポックにおいてラベルを逆向きに摂動させ, クリーンかつノイズの多いラベルの損失値を再び識別可能にする頑健なLNL法を提案する。
論文 参考訳(メタデータ) (2023-05-28T06:26:23Z) - Pseudo-Label Noise Suppression Techniques for Semi-Supervised Semantic
Segmentation [21.163070161951868]
半消費学習(SSL)は、教師なしデータをトレーニングに組み込むことで、大きなラベル付きデータセットの必要性を減らすことができる。
現在のSSLアプローチでは、初期教師付きトレーニングモデルを使用して、擬似ラベルと呼ばれる未ラベル画像の予測を生成する。
擬似ラベルノイズと誤りを3つのメカニズムで制御する。
論文 参考訳(メタデータ) (2022-10-19T09:46:27Z) - Towards Harnessing Feature Embedding for Robust Learning with Noisy
Labels [44.133307197696446]
ディープニューラルネットワーク(DNN)の記憶効果は,近年のラベルノイズ学習法において重要な役割を担っている。
ラベルノイズを用いたディープラーニングのための新しい特徴埋め込み方式, LabEl Noise Dilution (LEND) を提案する。
論文 参考訳(メタデータ) (2022-06-27T02:45:09Z) - Plug-and-Play Pseudo Label Correction Network for Unsupervised Person
Re-identification [36.3733132520186]
グラフベースの擬似ラベル補正ネットワーク(GLC)を提案する。
GLC は k 近傍グラフ上のサンプル間の関係制約を用いて初期雑音ラベルを補正する。
本手法は,様々なクラスタリング手法と互換性があり,最新技術の性能を継続的に向上させる。
論文 参考訳(メタデータ) (2022-06-14T05:59:37Z) - Transductive CLIP with Class-Conditional Contrastive Learning [68.51078382124331]
雑音ラベル付き分類ネットワークをスクラッチから学習するための新しいフレームワークであるTransductive CLIPを提案する。
擬似ラベルへの依存を軽減するために,クラス条件のコントラスト学習機構を提案する。
アンサンブルラベルは、ノイズラベル付きディープニューラルネットワークのトレーニングを安定化するための擬似ラベル更新戦略として採用されている。
論文 参考訳(メタデータ) (2022-06-13T14:04:57Z) - S3: Supervised Self-supervised Learning under Label Noise [53.02249460567745]
本稿では,ラベルノイズの存在下での分類の問題に対処する。
提案手法の核心は,サンプルのアノテートラベルと特徴空間内のその近傍のラベルの分布との整合性に依存するサンプル選択機構である。
提案手法は,CIFARCIFAR100とWebVisionやANIMAL-10Nなどの実環境ノイズデータセットの両方で,従来の手法をはるかに上回っている。
論文 参考訳(メタデータ) (2021-11-22T15:49:20Z) - Collaborative Label Correction via Entropy Thresholding [22.012654529811904]
ディープニューラルネットワーク(DNN)は非常にノイズの多いラベルに適合する能力を持つ。
彼らはまずクリーンなラベルでデータを学び、次にノイズの多いラベルで記憶する傾向があります。
与えられたしきい値によって決定される低エントロピー予測は、元のノイズラベルよりもずっと信頼性が高いことを示す。
論文 参考訳(メタデータ) (2021-03-31T11:42:55Z) - In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label
Selection Framework for Semi-Supervised Learning [53.1047775185362]
Pseudo-labeling (PL) は一般的な SSL アプローチで、この制約はありませんが、当初の処方では比較的不十分です。
PLは不整合モデルからの誤った高い信頼度予測により性能が低下していると論じる。
そこで本研究では,疑似ラベリング精度を向上させるための不確実性認識型擬似ラベル選択(ups)フレームワークを提案する。
論文 参考訳(メタデータ) (2021-01-15T23:29:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。