FINETUNA: Fine-tuning Accelerated Molecular Simulations
- URL: http://arxiv.org/abs/2205.01223v1
- Date: Mon, 2 May 2022 21:36:01 GMT
- Title: FINETUNA: Fine-tuning Accelerated Molecular Simulations
- Authors: Joseph Musielewicz, Xiaoxiao Wang, Tian Tian, and Zachary Ulissi
- Abstract summary: We present an online active learning framework for accelerating the simulation of atomic systems efficiently and accurately.
A method of transfer learning to incorporate prior information from pre-trained models accelerates simulations by reducing the number of DFT calculations by 91%.
Experiments on 30 benchmark adsorbate-catalyst systems show that our method of transfer learning to incorporate prior information from pre-trained models accelerates simulations by reducing the number of DFT calculations by 91%.
- Score: 5.543169726358164
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning approaches have the potential to approximate Density
Functional Theory (DFT) for atomistic simulations in a computationally
efficient manner, which could dramatically increase the impact of computational
simulations on real-world problems. However, they are limited by their accuracy
and the cost of generating labeled data. Here, we present an online active
learning framework for accelerating the simulation of atomic systems
efficiently and accurately by incorporating prior physical information learned
by large-scale pre-trained graph neural network models from the Open Catalyst
Project. Accelerating these simulations enables useful data to be generated
more cheaply, allowing better models to be trained and more atomistic systems
to be screened. We also present a method of comparing local optimization
techniques on the basis of both their speed and accuracy. Experiments on 30
benchmark adsorbate-catalyst systems show that our method of transfer learning
to incorporate prior information from pre-trained models accelerates
simulations by reducing the number of DFT calculations by 91%, while meeting an
accuracy threshold of 0.02 eV 93% of the time. Finally, we demonstrate a
technique for leveraging the interactive functionality built in to VASP to
efficiently compute single point calculations within our online active learning
framework without the significant startup costs. This allows VASP to work in
tandem with our framework while requiring 75% fewer self-consistent cycles than
conventional single point calculations. The online active learning
implementation, and examples using the VASP interactive code, are available in
the open source FINETUNA package on Github.
Related papers
- Bridging the Sim-to-Real Gap with Bayesian Inference [53.61496586090384]
We present SIM-FSVGD for learning robot dynamics from data.
We use low-fidelity physical priors to regularize the training of neural network models.
We demonstrate the effectiveness of SIM-FSVGD in bridging the sim-to-real gap on a high-performance RC racecar system.
arXiv Detail & Related papers (2024-03-25T11:29:32Z) - Predicting Traffic Flow with Federated Learning and Graph Neural with Asynchronous Computations Network [0.0]
We present a novel deep-learning method called Federated Learning and Asynchronous Graph Convolutional Networks (FLAGCN)
Our framework incorporates the principles of asynchronous graph convolutional networks with federated learning to enhance accuracy and efficiency of real-time traffic flow prediction.
arXiv Detail & Related papers (2024-01-05T09:36:42Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymax is a new data-driven simulator for autonomous driving in multi-agent scenes.
It runs entirely on hardware accelerators such as TPUs/GPUs and supports in-graph simulation for training.
We benchmark a suite of popular imitation and reinforcement learning algorithms with ablation studies on different design decisions.
arXiv Detail & Related papers (2023-10-12T20:49:15Z) - Transfer learning for atomistic simulations using GNNs and kernel mean
embeddings [24.560340485988128]
We propose a transfer learning algorithm that leverages the ability of graph neural networks (GNNs) to represent chemical environments together with kernel mean embeddings.
We test our approach on a series of realistic datasets of increasing complexity, showing excellent generalization and transferability performance.
arXiv Detail & Related papers (2023-06-02T14:58:16Z) - Continual learning autoencoder training for a particle-in-cell
simulation via streaming [52.77024349608834]
upcoming exascale era will provide a new generation of physics simulations with high resolution.
These simulations will have a high resolution, which will impact the training of machine learning models since storing a high amount of simulation data on disk is nearly impossible.
This work presents an approach that trains a neural network concurrently to a running simulation without data on a disk.
arXiv Detail & Related papers (2022-11-09T09:55:14Z) - Self-learning locally-optimal hypertuning using maximum entropy, and
comparison of machine learning approaches for estimating fatigue life in
composite materials [0.0]
We develop an ML nearest-neighbors-alike algorithm based on the principle of maximum entropy to predict fatigue damage.
The predictions achieve a good level of accuracy, similar to other ML algorithms.
arXiv Detail & Related papers (2022-10-19T12:20:07Z) - Benchmarking Learning Efficiency in Deep Reservoir Computing [23.753943709362794]
We introduce a benchmark of increasingly difficult tasks together with a data efficiency metric to measure how quickly machine learning models learn from training data.
We compare the learning speed of some established sequential supervised models, such as RNNs, LSTMs, or Transformers, with relatively less known alternative models based on reservoir computing.
arXiv Detail & Related papers (2022-09-29T08:16:52Z) - Incremental Online Learning Algorithms Comparison for Gesture and Visual
Smart Sensors [68.8204255655161]
This paper compares four state-of-the-art algorithms in two real applications: gesture recognition based on accelerometer data and image classification.
Our results confirm these systems' reliability and the feasibility of deploying them in tiny-memory MCUs.
arXiv Detail & Related papers (2022-09-01T17:05:20Z) - Efficient training of lightweight neural networks using Online
Self-Acquired Knowledge Distillation [51.66271681532262]
Online Self-Acquired Knowledge Distillation (OSAKD) is proposed, aiming to improve the performance of any deep neural model in an online manner.
We utilize k-nn non-parametric density estimation technique for estimating the unknown probability distributions of the data samples in the output feature space.
arXiv Detail & Related papers (2021-08-26T14:01:04Z) - Fast Modeling and Understanding Fluid Dynamics Systems with
Encoder-Decoder Networks [0.0]
We show that an accurate deep-learning-based proxy model can be taught efficiently by a finite-volume-based simulator.
Compared to traditional simulation, the proposed deep learning approach enables much faster forward computation.
We quantify the sensitivity of the deep learning model to key physical parameters and hence demonstrate that the inversion problems can be solved with great acceleration.
arXiv Detail & Related papers (2020-06-09T17:14:08Z) - One-step regression and classification with crosspoint resistive memory
arrays [62.997667081978825]
High speed, low energy computing machines are in demand to enable real-time artificial intelligence at the edge.
One-step learning is supported by simulations of the prediction of the cost of a house in Boston and the training of a 2-layer neural network for MNIST digit recognition.
Results are all obtained in one computational step, thanks to the physical, parallel, and analog computing within the crosspoint array.
arXiv Detail & Related papers (2020-05-05T08:00:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.