COMET Flows: Towards Generative Modeling of Multivariate Extremes and
Tail Dependence
- URL: http://arxiv.org/abs/2205.01224v1
- Date: Mon, 2 May 2022 21:37:54 GMT
- Title: COMET Flows: Towards Generative Modeling of Multivariate Extremes and
Tail Dependence
- Authors: Andrew McDonald, Pang-Ning Tan, Lifeng Luo
- Abstract summary: COMET Flows decompose the process of modeling a joint distribution into two parts: (i) modeling its marginal distributions, and (ii) modeling its copula distribution.
Results on both synthetic and real-world datasets demonstrate the effectiveness of COMET Flows.
- Score: 13.041607703862724
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Normalizing flows, a popular class of deep generative models, often fail to
represent extreme phenomena observed in real-world processes. In particular,
existing normalizing flow architectures struggle to model multivariate
extremes, characterized by heavy-tailed marginal distributions and asymmetric
tail dependence among variables. In light of this shortcoming, we propose COMET
(COpula Multivariate ExTreme) Flows, which decompose the process of modeling a
joint distribution into two parts: (i) modeling its marginal distributions, and
(ii) modeling its copula distribution. COMET Flows capture heavy-tailed
marginal distributions by combining a parametric tail belief at extreme
quantiles of the marginals with an empirical kernel density function at
mid-quantiles. In addition, COMET Flows capture asymmetric tail dependence
among multivariate extremes by viewing such dependence as inducing a
low-dimensional manifold structure in feature space. Experimental results on
both synthetic and real-world datasets demonstrate the effectiveness of COMET
Flows in capturing both heavy-tailed marginals and asymmetric tail dependence
compared to other state-of-the-art baseline architectures. All code is
available on GitHub at https://github.com/andrewmcdonald27/COMETFlows.
Related papers
- Heavy-Tailed Diffusion Models [38.713884992630675]
We show that traditional diffusion and flow-matching models fail to capture heavy-tailed behavior.
We address this by repurposing the diffusion framework for heavy-tail estimation.
We introduce t-EDM and t-Flow, extensions of existing diffusion and flow models that employ a Student-t prior.
arXiv Detail & Related papers (2024-10-18T04:29:46Z) - Marginalization Consistent Mixture of Separable Flows for Probabilistic Irregular Time Series Forecasting [4.714246221974192]
We develop a novel probabilistic irregular time series forecasting model, Marginalization Consistent Mixtures of Separable Flows (moses)
moses outperforms other state-of-the-art marginalization consistent models, performs on par with ProFITi, but different from ProFITi, guarantee marginalization consistency.
arXiv Detail & Related papers (2024-06-11T13:28:43Z) - Convergence Analysis of Discrete Diffusion Model: Exact Implementation
through Uniformization [17.535229185525353]
We introduce an algorithm leveraging the uniformization of continuous Markov chains, implementing transitions on random time points.
Our results align with state-of-the-art achievements for diffusion models in $mathbbRd$ and further underscore the advantages of discrete diffusion models in comparison to the $mathbbRd$ setting.
arXiv Detail & Related papers (2024-02-12T22:26:52Z) - Arbitrary Distributions Mapping via SyMOT-Flow: A Flow-based Approach Integrating Maximum Mean Discrepancy and Optimal Transport [2.7309692684728617]
We introduce a novel model called SyMOT-Flow that trains an invertible transformation by minimizing the symmetric maximum mean discrepancy between samples from two unknown distributions.
The resulting transformation leads to more stable and accurate sample generation.
arXiv Detail & Related papers (2023-08-26T08:39:16Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
Diffusion models (DMs) have been introduced in image deblurring and exhibited promising performance.
We propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring.
Experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T12:18:20Z) - Delving into Discrete Normalizing Flows on SO(3) Manifold for
Probabilistic Rotation Modeling [30.09829541716024]
We propose a novel normalizing flow on SO(3) manifold.
We show that our rotation normalizing flows significantly outperform the baselines on both unconditional and conditional tasks.
arXiv Detail & Related papers (2023-04-08T06:52:02Z) - Super-model ecosystem: A domain-adaptation perspective [101.76769818069072]
This paper attempts to establish the theoretical foundation for the emerging super-model paradigm via domain adaptation.
Super-model paradigms help reduce computational and data cost and carbon emission, which is critical to AI industry.
arXiv Detail & Related papers (2022-08-30T09:09:43Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
We build upon the diffeomorphic properties of normalizing flows to estimate the cumulative distribution function (CDF) over a closed region.
Our experiments on popular flow architectures and UCI datasets show a marked improvement in sample efficiency as compared to traditional estimators.
arXiv Detail & Related papers (2022-02-23T06:11:49Z) - Moser Flow: Divergence-based Generative Modeling on Manifolds [49.04974733536027]
Moser Flow (MF) is a new class of generative models within the family of continuous normalizing flows (CNF)
MF does not require invoking or backpropagating through an ODE solver during training.
We demonstrate for the first time the use of flow models for sampling from general curved surfaces.
arXiv Detail & Related papers (2021-08-18T09:00:24Z) - Normalizing Flows with Multi-Scale Autoregressive Priors [131.895570212956]
We introduce channel-wise dependencies in their latent space through multi-scale autoregressive priors (mAR)
Our mAR prior for models with split coupling flow layers (mAR-SCF) can better capture dependencies in complex multimodal data.
We show that mAR-SCF allows for improved image generation quality, with gains in FID and Inception scores compared to state-of-the-art flow-based models.
arXiv Detail & Related papers (2020-04-08T09:07:11Z) - Training Deep Energy-Based Models with f-Divergence Minimization [113.97274898282343]
Deep energy-based models (EBMs) are very flexible in distribution parametrization but computationally challenging.
We propose a general variational framework termed f-EBM to train EBMs using any desired f-divergence.
Experimental results demonstrate the superiority of f-EBM over contrastive divergence, as well as the benefits of training EBMs using f-divergences other than KL.
arXiv Detail & Related papers (2020-03-06T23:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.