論文の概要: Synergistic Interplay between Search and Large Language Models for
Information Retrieval
- arxiv url: http://arxiv.org/abs/2305.07402v3
- Date: Tue, 12 Dec 2023 14:04:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-13 20:31:55.041000
- Title: Synergistic Interplay between Search and Large Language Models for
Information Retrieval
- Title(参考訳): 情報検索における検索と大規模言語モデルとの相乗的相互作用
- Authors: Jiazhan Feng, Chongyang Tao, Xiubo Geng, Tao Shen, Can Xu, Guodong
Long, Dongyan Zhao, Daxin Jiang
- Abstract要約: InteRにより、RMはLLM生成した知識コレクションを使用してクエリの知識を拡張することができる。
InteRは、最先端手法と比較して総合的に優れたゼロショット検索性能を実現する。
- 参考スコア(独自算出の注目度): 141.18083677333848
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Information retrieval (IR) plays a crucial role in locating relevant
resources from vast amounts of data, and its applications have evolved from
traditional knowledge bases to modern retrieval models (RMs). The emergence of
large language models (LLMs) has further revolutionized the IR field by
enabling users to interact with search systems in natural languages. In this
paper, we explore the advantages and disadvantages of LLMs and RMs,
highlighting their respective strengths in understanding user-issued queries
and retrieving up-to-date information. To leverage the benefits of both
paradigms while circumventing their limitations, we propose InteR, a novel
framework that facilitates information refinement through synergy between RMs
and LLMs. InteR allows RMs to expand knowledge in queries using LLM-generated
knowledge collections and enables LLMs to enhance prompt formulation using
retrieved documents. This iterative refinement process augments the inputs of
RMs and LLMs, leading to more accurate retrieval. Experiments on large-scale
retrieval benchmarks involving web search and low-resource retrieval tasks
demonstrate that InteR achieves overall superior zero-shot retrieval
performance compared to state-of-the-art methods, even those using relevance
judgment. Source code is available at https://github.com/Cyril-JZ/InteR
- Abstract(参考訳): 情報検索(IR)は大量のデータから関連資源を抽出する上で重要な役割を担い、その応用は従来の知識ベースから現代検索モデル(RM)へと進化してきた。
大規模言語モデル(LLM)の出現は、ユーザーが自然言語で検索システムと対話できるようにすることによって、IR分野にさらなる革命をもたらした。
本稿では LLM と RM の長所と短所を考察し,ユーザ発行クエリの理解と最新情報検索におけるそれぞれの強みを強調した。
制約を回避しつつ、両パラダイムの利点を活用するために、RMとLLMの相乗効果による情報改善を促進する新しいフレームワークInteRを提案する。
InteRにより、RMはLLM生成した知識コレクションを使用してクエリにおける知識を拡大し、LLMが検索したドキュメントを使用した迅速な定式化を強化することができる。
この反復的な精錬プロセスはRMとLLMの入力を増大させ、より正確な検索につながる。
Web検索と低リソース検索タスクを含む大規模検索ベンチマーク実験により、InteRは、関連判定を用いた場合でさえ、最先端の手法と比較して、全体的なゼロショット検索性能が優れていることが示された。
ソースコードはhttps://github.com/Cyril-JZ/InteRで入手できる。
関連論文リスト
- Invar-RAG: Invariant LLM-aligned Retrieval for Better Generation [43.630437906898635]
Invar-RAGと呼ばれる2段階ファインチューニングアーキテクチャを提案する。
検索段階では、LORAに基づく表現学習を統合してLLMベースの検索器を構築する。
生成段階では、抽出した情報に基づいて回答を生成する際のLCM精度を向上させるための精細調整法が用いられる。
論文 参考訳(メタデータ) (2024-11-11T14:25:37Z) - MM-Embed: Universal Multimodal Retrieval with Multimodal LLMs [78.5013630951288]
本稿では,マルチモーダル大言語モデル(MLLM)を用いた情報検索手法を提案する。
まず,16個の検索タスクを持つ10個のデータセットに対して,MLLMをバイエンコーダレトリバーとして微調整する。
我々は,MLLMレトリバーが提示するモダリティバイアスを軽減するために,モダリティを考慮したハードネガティブマイニングを提案する。
論文 参考訳(メタデータ) (2024-11-04T20:06:34Z) - Towards Enhancing Linked Data Retrieval in Conversational UIs using Large Language Models [1.3980986259786221]
本稿では,既存のシステムにおけるLarge Language Models(LLM)の統合について検討する。
LLMの高度な自然言語理解機能を活用することで、Webシステム内のRDFエンティティ抽出を改善する。
本手法の評価は,ユーザクエリに対するシステム表現性と応答精度の顕著な向上を示す。
論文 参考訳(メタデータ) (2024-09-24T16:31:33Z) - Redefining Information Retrieval of Structured Database via Large Language Models [10.117751707641416]
本稿では,ChatLRと呼ばれる新しい検索拡張フレームワークを提案する。
主に、Large Language Models (LLM) の強力な意味理解能力を用いて、正確かつ簡潔な情報検索を実現する。
実験の結果、ChatLRがユーザクエリに対処する効果を示し、全体の情報検索精度は98.8%を超えた。
論文 参考訳(メタデータ) (2024-05-09T02:37:53Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
InFO-RAG という情報改質訓練手法を提案する。
InFO-RAGは低コストで、様々なタスクにまたがっている。
LLaMA2の性能を平均9.39%向上させる。
論文 参考訳(メタデータ) (2024-02-28T08:24:38Z) - Self-Retrieval: End-to-End Information Retrieval with One Large Language Model [97.71181484082663]
本稿では,新たなLLM駆動情報検索アーキテクチャであるSelf-Retrievalを紹介する。
自己検索は、自己教師付き学習を通じて検索コーパスを内部化し、検索プロセスをシーケンシャルな通過生成に変換し、再ランク付けのための関連性評価を行う。
論文 参考訳(メタデータ) (2024-02-23T18:45:35Z) - ReSLLM: Large Language Models are Strong Resource Selectors for
Federated Search [35.44746116088232]
フェデレーション検索は、Retrieval-Augmented Generationパイプラインのコンテキストにおいて、ますます重要になる。
現在のSOTA資源選択手法は特徴に基づく学習手法に依存している。
ゼロショット環境でのフェデレーション検索における資源選択を促進するために,ReSLLMを提案する。
論文 参考訳(メタデータ) (2024-01-31T07:58:54Z) - Large Language Models for Information Retrieval: A Survey [58.30439850203101]
情報検索は、項ベースの手法から高度なニューラルモデルとの統合へと進化してきた。
近年の研究では、大規模言語モデル(LLM)を活用してIRシステムの改善が試みられている。
LLMとIRシステムの合流点を探索し、クエリリライト、リトリバー、リランカー、リーダーといった重要な側面を含む。
論文 参考訳(メタデータ) (2023-08-14T12:47:22Z) - RRAML: Reinforced Retrieval Augmented Machine Learning [10.94680155282906]
我々はReinforced Retrieval Augmented Machine Learning (RRAML)と呼ばれる新しいフレームワークを提案する。
RRAMLは、大規模な言語モデルの推論機能と、巨大なユーザが提供するデータベースから目的に構築された検索者によって取得された情報を統合する。
この論文で概説された研究課題は、AIの分野に大きな影響を与える可能性があると信じている。
論文 参考訳(メタデータ) (2023-07-24T13:51:19Z) - Search-in-the-Chain: Interactively Enhancing Large Language Models with
Search for Knowledge-intensive Tasks [121.74957524305283]
本稿では、情報検索(IR)とLarge Language Model(LLM)のインタラクションのための、textbfSearch-in-the-Chain(SearChain)という新しいフレームワークを提案する。
実験の結果、SearChainは複雑な知識集約タスクにおける最先端のベースラインを上回っていることがわかった。
論文 参考訳(メタデータ) (2023-04-28T10:15:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。