Radiative processes of single and entangled detectors on circular trajectories in (2+1) dimensional Minkowski spacetime
- URL: http://arxiv.org/abs/2205.01305v3
- Date: Mon, 27 May 2024 05:36:49 GMT
- Title: Radiative processes of single and entangled detectors on circular trajectories in (2+1) dimensional Minkowski spacetime
- Authors: Subhajit Barman, Bibhas Ranjan Majhi, L. Sriramkumar,
- Abstract summary: Two entangled detectors are moving on circular trajectories in $(2+1)$-dimensional Minkowski spacetime.
We calculate the transition probability rates of the detectors in the Minkowski vacuum and in a thermal bath.
We evaluate the transition probability rates of the detectors when they are switched on for a finite time interval.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the radiative processes involving two entangled Unruh-DeWitt detectors that are moving on circular trajectories in $(2+1)$-dimensional Minkowski spacetime. We assume that the detectors are coupled to a massless, quantum scalar field, and calculate the transition probability rates of the detectors in the Minkowski vacuum as well as in a thermal bath. We also evaluate the transition probability rates of the detectors when they are switched on for a finite time interval with the aid of a Gaussian switching function. We begin by examining the response of a single detector before we go on to consider the case of two entangled detectors. As we shall see, working in $(2+1)$ spacetime dimensions makes the computations of the transition probability rates of the detectors relatively simpler. We find that the cross transition probability rates of the two entangled detectors can be comparable to the auto transition probability rates of the individual detectors. We discuss specific characteristics of the response of the entangled detectors for different values of the parameters involved and highlight the effects of the thermal bath as well as switching on the detector for a finite time interval.
Related papers
- Entanglement generation between two comoving Unruh-DeWitt detectors in the cosmological de Sitter spacetime [2.526712624596066]
We consider two comoving two-level detectors at a coincident spatial position.
The detectors are individually coupled to a scalar field, which eventually leads to coupling between the two detectors.
We compute the logarithmic negativity, quantifying the degree of entanglement generated at late times between the two detectors.
arXiv Detail & Related papers (2024-04-18T06:20:07Z) - Mutual information harvested by uniformly accelerated particle detectors [0.0]
We numerically show that, while a single detector responds as if it is immersed in a thermal bath, the quantum mutual information between two accelerating detectors behaves differently.
This is due to the fact that while the Wightman function along the trajectory of a single uniformly accelerating detector is the same as that of as a detector in a thermal bath, a pair of detectors in the same respective cases will have different Wightman functions.
arXiv Detail & Related papers (2022-12-23T19:00:02Z) - Gate-based spin readout of hole quantum dots with site-dependent
$g-$factors [101.23523361398418]
We experimentally investigate a hole double quantum dot in silicon by carrying out spin readout with gate-based reflectometry.
We show that characteristic features in the reflected phase signal arising from magneto-spectroscopy convey information on site-dependent $g-$factors in the two dots.
arXiv Detail & Related papers (2022-06-27T09:07:20Z) - E-detectors: a nonparametric framework for sequential change detection [86.15115654324488]
We develop a fundamentally new and general framework for sequential change detection.
Our procedures come with clean, nonasymptotic bounds on the average run length.
We show how to design their mixtures in order to achieve both statistical and computational efficiency.
arXiv Detail & Related papers (2022-03-07T17:25:02Z) - From One to Many: A Deep Learning Coincident Gravitational-Wave Search [58.720142291102135]
We construct a two-detector search for gravitational waves from binary black hole mergers using neural networks trained on non-spinning binary black hole data from a single detector.
We find that none of these simple two-detector networks are capable of improving the sensitivity over applying networks individually to the data from the detectors.
arXiv Detail & Related papers (2021-08-24T13:25:02Z) - Bandit Quickest Changepoint Detection [55.855465482260165]
Continuous monitoring of every sensor can be expensive due to resource constraints.
We derive an information-theoretic lower bound on the detection delay for a general class of finitely parameterized probability distributions.
We propose a computationally efficient online sensing scheme, which seamlessly balances the need for exploration of different sensing options with exploitation of querying informative actions.
arXiv Detail & Related papers (2021-07-22T07:25:35Z) - New results on vacuum fluctuations: Accelerated detector versus inertial
detector in a quantum field [0.0]
We focus on two moving detectors system for future application in quantum teleportation.
We find that the rajectory of a uniformly accelerated detector in Rindler space cannot be extended to a trajectory in which a detector moves at constant velocity.
arXiv Detail & Related papers (2021-04-07T17:06:33Z) - Probabilistic two-stage detection [83.9604523643406]
We show how to build a probabilistic two-stage detector from any state-of-the-art one-stage detector.
The resulting detectors are faster and more accurate than both their one- and two-stage precursors.
arXiv Detail & Related papers (2021-03-12T18:56:17Z) - Entanglement amplification between superposed detectors in flat and
curved spacetimes [0.0]
We consider an entanglement harvesting protocol between two Unruh-deWitt detectors in quantum superpositions of static trajectories in the static de Sitter and thermal Minkowski spacetimes.
We demonstrate for the first time that the spatial superposition of each detector's path allows entanglement to be harvested from the quantum field in regimes where it would be otherwise impossible for detectors on classical trajectories.
arXiv Detail & Related papers (2021-01-06T08:06:27Z) - Unruh-deWitt detectors in quantum superpositions of trajectories [0.0]
We extend the standard treatment of an Unruh-deWitt detector to include the detector travelling in a quantum superposition of classical trajectories.
We derive perturbative expressions for the final state of the detector, and show that it depends on field correlation functions evaluated locally.
We show that in general, such a detector does not thermalise even if the superposed paths would individually yield the same thermal state.
arXiv Detail & Related papers (2020-03-28T12:04:42Z) - Decoherence as Detector of the Unruh Effect [58.720142291102135]
We propose a new type of the Unruh-DeWitt detector which measures the decoherence of the reduced density matrix of the detector interacting with the massless quantum scalar field.
We find that the decoherence decay rates are different in the inertial and accelerated reference frames.
arXiv Detail & Related papers (2020-03-10T21:45:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.