論文の概要: Multimodal Detection of Unknown Objects on Roads for Autonomous Driving
- arxiv url: http://arxiv.org/abs/2205.01414v1
- Date: Tue, 3 May 2022 10:58:41 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-04 20:29:14.193248
- Title: Multimodal Detection of Unknown Objects on Roads for Autonomous Driving
- Title(参考訳): 自動運転のための道路上の未知物体のマルチモーダル検出
- Authors: Daniel Bogdoll and Enrico Eisen and Maximilian Nitsche and Christin
Scheib and J. Marius Z\"ollner
- Abstract要約: 未知の物体を検出する新しいパイプラインを提案する。
我々は,最先端の美術品検出モデルを逐次的に組み合わせることで,ライダーとカメラのデータを利用する。
- 参考スコア(独自算出の注目度): 4.3310896118860445
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Tremendous progress in deep learning over the last years has led towards a
future with autonomous vehicles on our roads. Nevertheless, the performance of
their perception systems is strongly dependent on the quality of the utilized
training data. As these usually only cover a fraction of all object classes an
autonomous driving system will face, such systems struggle with handling the
unexpected. In order to safely operate on public roads, the identification of
objects from unknown classes remains a crucial task. In this paper, we propose
a novel pipeline to detect unknown objects. Instead of focusing on a single
sensor modality, we make use of lidar and camera data by combining state-of-the
art detection models in a sequential manner. We evaluate our approach on the
Waymo Open Perception Dataset and point out current research gaps in anomaly
detection.
- Abstract(参考訳): 過去数年間のディープラーニングの飛躍的な進歩は、自動運転車が道を走る未来へと繋がった。
それでも、認識システムの性能は、利用したトレーニングデータの品質に強く依存している。
これらは通常、自動運転システムが直面するすべてのオブジェクトクラスのほんの一部しかカバーしないため、このようなシステムは予期しない問題に対処するのに苦労する。
公道で安全に運用するためには、未知のクラスからの物体の識別が重要な課題である。
本稿では,未知の物体を検出する新しいパイプラインを提案する。
単一センサのモダリティに焦点をあてるのではなく,最先端のアート検出モデルを逐次的に組み合わせることで,ライダーとカメラのデータを活用する。
waymoオープン知覚データセットのアプローチを評価し,異常検出における現在の研究ギャップを指摘する。
関連論文リスト
- End-to-End 3D Object Detection using LiDAR Point Cloud [0.0]
本稿では,LiDAR点雲の新たなエンコーディングを用いて,自律走行車に近いクラスの位置を推定する手法を提案する。
出力は、シーン内のオブジェクトの位置と向きを3D境界ボックスとシーンオブジェクトのラベルで予測する。
論文 参考訳(メタデータ) (2023-12-24T00:52:14Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - End-to-end Autonomous Driving using Deep Learning: A Systematic Review [0.0]
エンドツーエンドの自律運転(End-to-end autonomous driving)は、センサーの入力データやその他のメタデータを事前情報として取り込み、エゴ車の制御信号や計画された軌跡を直接出力する、完全に微分可能な機械学習システムである。
本稿では, 物体検出, セマンティックシーン理解, 物体追跡, 軌道予測, 軌道計画, 車両制御, 社会行動, コミュニケーションなど, 最新の機械学習技術をすべて体系的に検証し, このエンドツーエンドのタスクを実行する。
論文 参考訳(メタデータ) (2023-08-27T17:43:58Z) - Recent Advancements in End-to-End Autonomous Driving using Deep
Learning: A Survey [9.385936248154987]
エンド・ツー・エンドの運転は、モジュラーシステムに関連する欠点を回避するため、有望なパラダイムである。
エンド・ツー・エンド自動運転の最近の進歩は分析され、基礎原理に基づいて研究が分類される。
本稿では,最先端の評価,課題の特定,今後の可能性を探る。
論文 参考訳(メタデータ) (2023-07-10T07:00:06Z) - Unsupervised Self-Driving Attention Prediction via Uncertainty Mining
and Knowledge Embedding [51.8579160500354]
本研究では、不確実性モデリングと知識統合の駆動による自動運転の注意を予測できる教師なし手法を提案する。
結果は、完全に教師された最先端のアプローチと比較して、同等またはさらに印象的なパフォーマンスを示している。
論文 参考訳(メタデータ) (2023-03-17T00:28:33Z) - Motion Inspired Unsupervised Perception and Prediction in Autonomous
Driving [29.731790562352344]
本論文は,オープンセット移動物体を理解するための学習学習モデルと予測モデルである,新規で挑戦的な方向性を開拓する。
提案フレームワークは自己学習フローを用いて自動メタラベリングパイプラインを起動し,自動監視を実現する。
提案手法は, オープンセット3次元検出と軌道予測において, 極めて有望な結果をもたらすことを示す。
論文 参考訳(メタデータ) (2022-10-14T18:55:44Z) - CODA: A Real-World Road Corner Case Dataset for Object Detection in
Autonomous Driving [117.87070488537334]
我々は、ビジョンベース検出器のこの重要な問題を露呈する、CODAという挑戦的なデータセットを導入する。
大規模自動運転データセットで訓練された標準物体検出器の性能は、mARの12.8%以下に著しく低下した。
我々は最先端のオープンワールドオブジェクト検出器を実験し、CODAの新しいオブジェクトを確実に識別できないことを発見した。
論文 参考訳(メタデータ) (2022-03-15T08:32:56Z) - SODA10M: Towards Large-Scale Object Detection Benchmark for Autonomous
Driving [94.11868795445798]
我々は,SODA10Mという名の自律走行用大規模物体検出ベンチマークをリリースし,1000万枚の未ラベル画像と6つの代表対象カテゴリをラベル付けした20K画像を含む。
多様性を向上させるために、画像は32の異なる都市で、1フレームあたり10秒毎に異なる気象条件、期間、場所のシーンで収集される。
我々は、既存の教師付き最先端検出モデル、一般的な自己監督型および半教師付きアプローチ、および将来のモデルの開発方法に関するいくつかの知見について、広範な実験と詳細な分析を行った。
論文 参考訳(メタデータ) (2021-06-21T13:55:57Z) - One Million Scenes for Autonomous Driving: ONCE Dataset [91.94189514073354]
自律運転シナリオにおける3次元物体検出のためのONCEデータセットを提案する。
データは、利用可能な最大の3D自動運転データセットよりも20倍長い144時間の運転時間から選択される。
我々はONCEデータセット上で、様々な自己教師的・半教師的手法を再現し、評価する。
論文 参考訳(メタデータ) (2021-06-21T12:28:08Z) - Exploiting Playbacks in Unsupervised Domain Adaptation for 3D Object
Detection [55.12894776039135]
ディープラーニングに基づく最先端の3Dオブジェクト検出器は、有望な精度を示しているが、ドメインの慣用性に過度に適合する傾向がある。
対象領域の擬似ラベルの検出器を微調整することで,このギャップを大幅に削減する新たな学習手法を提案する。
5つの自律運転データセットにおいて、これらの擬似ラベル上の検出器を微調整することで、新しい運転環境への領域ギャップを大幅に減らすことを示す。
論文 参考訳(メタデータ) (2021-03-26T01:18:11Z) - PLOP: Probabilistic poLynomial Objects trajectory Planning for
autonomous driving [8.105493956485583]
条件付き模倣学習アルゴリズムを用いて,エゴ車とその周辺地域の軌道を推定する。
私たちのアプローチは計算効率が高く、オンボードセンサーのみに依存します。
公開データセットnuScenesでオフラインで評価する。
論文 参考訳(メタデータ) (2020-03-09T16:55:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。