論文の概要: End-to-end Autonomous Driving using Deep Learning: A Systematic Review
- arxiv url: http://arxiv.org/abs/2311.18636v1
- Date: Sun, 27 Aug 2023 17:43:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-15 15:08:32.529867
- Title: End-to-end Autonomous Driving using Deep Learning: A Systematic Review
- Title(参考訳): ディープラーニングを用いたエンドツーエンド自動運転:システムレビュー
- Authors: Apoorv Singh
- Abstract要約: エンドツーエンドの自律運転(End-to-end autonomous driving)は、センサーの入力データやその他のメタデータを事前情報として取り込み、エゴ車の制御信号や計画された軌跡を直接出力する、完全に微分可能な機械学習システムである。
本稿では, 物体検出, セマンティックシーン理解, 物体追跡, 軌道予測, 軌道計画, 車両制御, 社会行動, コミュニケーションなど, 最新の機械学習技術をすべて体系的に検証し, このエンドツーエンドのタスクを実行する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: End-to-end autonomous driving is a fully differentiable machine learning
system that takes raw sensor input data and other metadata as prior information
and directly outputs the ego vehicle's control signals or planned trajectories.
This paper attempts to systematically review all recent Machine Learning-based
techniques to perform this end-to-end task, including, but not limited to,
object detection, semantic scene understanding, object tracking, trajectory
predictions, trajectory planning, vehicle control, social behavior, and
communications. This paper focuses on recent fully differentiable end-to-end
reinforcement learning and deep learning-based techniques. Our paper also
builds taxonomies of the significant approaches by sub-grouping them and
showcasing their research trends. Finally, this survey highlights the open
challenges and points out possible future directions to enlighten further
research on the topic.
- Abstract(参考訳): エンドツーエンドの自律運転(End-to-end autonomous driving)は、センサー入力データやその他のメタデータを事前情報として取り込み、エゴ車の制御信号や計画された軌跡を直接出力する、完全に微分可能な機械学習システムである。
本稿では, 物体検出, 意味的シーン理解, 物体追跡, 軌道予測, 軌道計画, 車両制御, 社会行動, コミュニケーションなどを含む, エンドツーエンドタスクを行うための最近の機械学習技術をすべて体系的に検討する。
本稿では,近年の完全差別化可能なエンドツーエンド強化学習と深層学習技術に焦点を当てた。
また,これらをサブグループ化し,その研究動向を示すことにより,重要なアプローチの分類も構築した。
最後に、この調査はオープンな課題を強調し、このトピックに関するさらなる研究を啓蒙する今後の方向性を指摘する。
関連論文リスト
- Exploring the Causality of End-to-End Autonomous Driving [57.631400236930375]
本稿では,エンドツーエンド自動運転の因果関係を探究し,分析するための包括的アプローチを提案する。
私たちの研究は、エンドツーエンドの自動運転の謎を初めて明らかにし、ブラックボックスを白い箱に変えた。
論文 参考訳(メタデータ) (2024-07-09T04:56:11Z) - LLM4Drive: A Survey of Large Language Models for Autonomous Driving [62.10344445241105]
大規模言語モデル(LLM)は、文脈理解、論理的推論、回答生成などの能力を示した。
本稿では,自動走行のための大規模言語モデル (LLM4AD) に関する研究ラインを体系的にレビューする。
論文 参考訳(メタデータ) (2023-11-02T07:23:33Z) - Machine Learning for Autonomous Vehicle's Trajectory Prediction: A
comprehensive survey, Challenges, and Future Research Directions [3.655021726150368]
AVの文脈における軌道予測に関する200以上の研究について検討した。
本総説では,いくつかの深層学習手法を総合的に評価する。
既存の文献の課題を特定し,潜在的研究の方向性を概説することにより,AV軌道予測領域における知識の進歩に大きく貢献する。
論文 参考訳(メタデータ) (2023-07-12T10:20:19Z) - Recent Advancements in End-to-End Autonomous Driving using Deep
Learning: A Survey [9.385936248154987]
エンド・ツー・エンドの運転は、モジュラーシステムに関連する欠点を回避するため、有望なパラダイムである。
エンド・ツー・エンド自動運転の最近の進歩は分析され、基礎原理に基づいて研究が分類される。
本稿では,最先端の評価,課題の特定,今後の可能性を探る。
論文 参考訳(メタデータ) (2023-07-10T07:00:06Z) - End-to-end Autonomous Driving: Challenges and Frontiers [45.391430626264764]
エンドツーエンドの自動運転におけるモチベーション、ロードマップ、方法論、課題、今後のトレンドについて、270以上の論文を包括的に分析する。
マルチモダリティ、解釈可能性、因果的混乱、堅牢性、世界モデルなど、いくつかの重要な課題を掘り下げます。
基礎モデルと視覚前訓練の現在の進歩と、これらの技術をエンドツーエンドの駆動フレームワークに組み込む方法について論じる。
論文 参考訳(メタデータ) (2023-06-29T14:17:24Z) - Exploring Contextual Representation and Multi-Modality for End-to-End
Autonomous Driving [58.879758550901364]
最近の知覚システムは、センサー融合による空間理解を高めるが、しばしば完全な環境コンテキストを欠いている。
我々は,3台のカメラを統合し,人間の視野をエミュレートするフレームワークを導入し,トップダウンのバードアイビューセマンティックデータと組み合わせて文脈表現を強化する。
提案手法は, オープンループ設定において0.67mの変位誤差を達成し, nuScenesデータセットでは6.9%の精度で現在の手法を上回っている。
論文 参考訳(メタデータ) (2022-10-13T05:56:20Z) - 3D Object Detection for Autonomous Driving: A Comprehensive Survey [48.30753402458884]
自動運転車の近くで重要な3Dオブジェクトの位置、サイズ、カテゴリをインテリジェントに予測する3Dオブジェクト検出は、認識システムの重要な部分である。
本稿では,自律運転における3次元物体検出技術の進歩を概観する。
論文 参考訳(メタデータ) (2022-06-19T19:43:11Z) - Multimodal Detection of Unknown Objects on Roads for Autonomous Driving [4.3310896118860445]
未知の物体を検出する新しいパイプラインを提案する。
我々は,最先端の美術品検出モデルを逐次的に組み合わせることで,ライダーとカメラのデータを利用する。
論文 参考訳(メタデータ) (2022-05-03T10:58:41Z) - Human-in-the-Loop Disinformation Detection: Stance, Sentiment, or
Something Else? [93.91375268580806]
政治とパンデミックは、機械学習対応の偽ニュース検出アルゴリズムの開発に十分な動機を与えている。
既存の文献は、主に完全自動化されたケースに焦点を当てているが、その結果得られた技術は、軍事応用に必要な様々なトピック、ソース、時間スケールに関する偽情報を確実に検出することはできない。
既に利用可能なアナリストを人間のループとして活用することにより、感情分析、アスペクトベースの感情分析、姿勢検出といった標準的な機械学習技術は、部分的に自動化された偽情報検出システムに使用するためのもっとも有効な方法となる。
論文 参考訳(メタデータ) (2021-11-09T13:30:34Z) - A Survey of End-to-End Driving: Architectures and Training Methods [0.9449650062296824]
私たちは、運転パイプライン全体を1つのニューラルネットワークに置き換える、いわゆるエンドツーエンドの自動運転アプローチについて、より深く検討しています。
本稿では,エンド・ツー・エンド駆動文学における学習方法,入力・出力モダリティ,ネットワークアーキテクチャ,評価スキームについてレビューする。
我々は、エンドツーエンドの自動運転システムの最も有望な要素を組み合わせたアーキテクチャでレビューを締めくくります。
論文 参考訳(メタデータ) (2020-03-13T17:42:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。