論文の概要: Residual Graph Convolutional Recurrent Networks For Multi-step Traffic
Flow Forecasting
- arxiv url: http://arxiv.org/abs/2205.01480v1
- Date: Tue, 3 May 2022 13:23:38 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-04 13:44:32.316054
- Title: Residual Graph Convolutional Recurrent Networks For Multi-step Traffic
Flow Forecasting
- Title(参考訳): 多段階交通流予測のための残差グラフ畳み込みリカレントネットワーク
- Authors: Wei Zhao, Shiqi Zhang, Bing Zhou and Bei Wang
- Abstract要約: 我々は、Residual Graph Convolutional Recurrent Network(RGCRN)という新しい時空間予測モデルを提案する。
このモデルでは,提案したResidual Graph Convolutional Network (ResGCN) を用いて,道路網の微細な空間相関を捉える。
2つの実際のデータセットの比較実験の結果、RCCRNは最高のベースラインモデルと比較して平均20.66%改善していることがわかった。
- 参考スコア(独自算出の注目度): 12.223433627287605
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traffic flow forecasting is essential for traffic planning, control and
management. The main challenge of traffic forecasting tasks is accurately
capturing traffic networks' spatial and temporal correlation. Although there
are many traffic forecasting methods, most of them still have limitations in
capturing spatial and temporal correlations. To improve traffic forecasting
accuracy, we propose a new Spatial-temporal forecasting model, namely the
Residual Graph Convolutional Recurrent Network (RGCRN). The model uses our
proposed Residual Graph Convolutional Network (ResGCN) to capture the
fine-grained spatial correlation of the traffic road network and then uses a
Bi-directional Gated Recurrent Unit (BiGRU) to model time series with spatial
information and obtains the temporal correlation by analysing the change in
information transfer between the forward and reverse neurons of the time series
data. Our comparative experimental results on two real datasets show that RGCRN
improves on average by 20.66% compared to the best baseline model. You can get
our source code and data through https://github.com/zhangshqii/RGCRN.
- Abstract(参考訳): 交通流量予測は交通計画、制御、管理に不可欠である。
交通予測タスクの主な課題は、交通ネットワークの空間的および時間的相関を正確に把握することである。
交通予測手法は数多く存在するが、そのほとんどは時間的・空間的相関を捉えることに制限がある。
交通予測精度を向上させるため,Residual Graph Convolutional Recurrent Network (RGCRN) と呼ばれる新しい時空間予測モデルを提案する。
このモデルでは,提案したResidual Graph Convolutional Network (ResGCN) を用いて,交通路網の微細な空間相関を捉えるとともに,双方向Gated Recurrent Unit (BiGRU) を用いて時系列を空間情報でモデル化し,時系列データの前後のニューロン間の情報伝達の変化を分析して時間的相関を求める。
2つの実データを用いた比較実験の結果, rgcrnは, 最良ベースラインモデルと比較して平均20.66%改善した。
ソースコードとデータはhttps://github.com/zhangshqii/RGCRN.comから取得できます。
関連論文リスト
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
本稿ではSGCN-LSTM(Signal-Enhanced Graph Convolutional Network Long Short Term Memory)モデルを提案する。
PEMS-BAYロードネットワークトラフィックデータセットの実験は、SGCN-LSTMモデルの有効性を示す。
論文 参考訳(メタデータ) (2024-11-01T00:37:00Z) - Temporal Graph Learning Recurrent Neural Network for Traffic Forecasting [27.20703077756038]
これらの問題に対処するため,TGLRN(Temporal Graph Learning Recurrent Neural Network)を提案する。
より正確には、時系列の性質を効果的にモデル化するために、リカレントニューラルネットワーク(RNN)を活用し、各ステップでグラフを動的に構築する。
実世界の4つのベンチマークデータセットの実験結果から, TGLRNの有効性が示された。
論文 参考訳(メタデータ) (2024-06-04T19:08:40Z) - A Multi-Graph Convolutional Neural Network Model for Short-Term Prediction of Turning Movements at Signalized Intersections [0.6215404942415159]
本研究では,交差点での移動予測を回転させる多グラフ畳み込みニューラルネットワーク(MGCNN)と呼ばれる新しいディープラーニングアーキテクチャを提案する。
提案アーキテクチャは,トラフィックデータの時間変動をモデル化する多グラフ構造と,グラフ上のトラフィックデータの空間変動をモデル化するためのスペクトル畳み込み演算を組み合わせた。
モデルが1, 2, 3, 4, 5分後に短期予測を行う能力は,4つのベースライン・オブ・ザ・アーティファクトモデルに対して評価された。
論文 参考訳(メタデータ) (2024-06-02T05:41:25Z) - Dynamic Causal Graph Convolutional Network for Traffic Prediction [19.759695727682935]
本稿では,時間変動動的ネットワークを組み込んだトラフィック予測手法を提案する。
次に、グラフ畳み込みネットワークを使用してトラフィック予測を生成します。
実交通データを用いた実験結果から,提案手法の予測性能が優れていることを示す。
論文 参考訳(メタデータ) (2023-06-12T10:46:31Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
本稿では,Laplacian enhanced Low-rank tensor (LETC) フレームワークを提案する。
次に,提案したモデルをネットワークワイド・クリグにスケールアップするために,複数の有効な数値手法を用いて効率的な解アルゴリズムを設計する。
論文 参考訳(メタデータ) (2022-10-21T07:25:57Z) - STCGAT: Spatial-temporal causal networks for complex urban road traffic
flow prediction [12.223433627287605]
交通データは非常に非線形であり、道路ノード間の複雑な空間的相関を持つ。
既存のアプローチでは、固定された道路ネットワークトポロジマップと独立した時系列モジュールを使用して、時空間相関をキャプチャする。
本稿では,グラフ注意ネットワーク(GAT)を介して交通ネットワークの空間依存性を捕捉し,交通データの因果関係を解析する新しい予測モデルを提案する。
論文 参考訳(メタデータ) (2022-03-21T06:38:34Z) - Predicting traffic signals on transportation networks using
spatio-temporal correlations on graphs [56.48498624951417]
本稿では,複数の熱拡散カーネルをデータ駆動予測モデルにマージして交通信号を予測する交通伝搬モデルを提案する。
予測誤差を最小限に抑えるためにベイズ推定を用いてモデルパラメータを最適化し,2つの手法の混合率を決定する。
提案モデルでは,計算労力の少ない最先端のディープニューラルネットワークに匹敵する予測精度を示す。
論文 参考訳(メタデータ) (2021-04-27T18:17:42Z) - Unified Spatio-Temporal Modeling for Traffic Forecasting using Graph
Neural Network [2.7088996845250897]
このような分解加群との複素時間的関係を抽出するのは時間的効果が低いと我々は主張する。
空間的および時間的アグリゲーションを行う交通予測のための統一S週間グラフ畳み込み(USTGCN)を提案する。
我々のモデルUSTGCNは3つの人気のあるベンチマークデータセットで最先端のパフォーマンスを上回ります。
論文 参考訳(メタデータ) (2021-04-26T12:33:17Z) - Spatio-temporal Modeling for Large-scale Vehicular Networks Using Graph
Convolutional Networks [110.80088437391379]
SMARTと呼ばれるグラフベースのフレームワークが提案され、大規模な地理的領域にわたるV2I通信遅延の統計をモデル化し、追跡する。
深層Q-networksアルゴリズムと統合したグラフ畳み込みネットワークを用いたグラフ再構築型手法を開発する。
その結果,提案手法は,モデル化の精度と効率と,大規模車両ネットワークにおける遅延性能を有意に向上させることが示された。
論文 参考訳(メタデータ) (2021-03-13T06:56:29Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
交通予測のための地理・長期時間グラフ畳み込み型ニューラルネットワーク(GLT-GCRNN)を提案する。
本研究では,地理的・長期的時間的パターンを共有する道路間のリッチな相互作用を学習する交通予測のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-23T03:50:46Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
本稿では,長期交通予測の精度を向上させるため,時空間変圧器ネットワーク(STTN)の新たなパラダイムを提案する。
具体的には、有向空間依存を動的にモデル化することにより、空間変換器と呼ばれる新しいグラフニューラルネットワークを提案する。
提案モデルにより,長期間にわたる空間的依存関係に対する高速かつスケーラブルなトレーニングが可能になる。
論文 参考訳(メタデータ) (2020-01-09T10:21:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。