Automated Learning of Interpretable Models with Quantified Uncertainty
- URL: http://arxiv.org/abs/2205.01626v1
- Date: Tue, 12 Apr 2022 19:56:42 GMT
- Title: Automated Learning of Interpretable Models with Quantified Uncertainty
- Authors: G.F. Bomarito and P.E. Leser and N.C.M Strauss and K.M. Garbrecht and
J.D. Hochhalter
- Abstract summary: We introduce a new framework for genetic-programming-based symbolic regression (GPSR)
GPSR uses model evidence to formulate replacement probability during the selection phase of evolution.
It is shown to increase interpretability, improve robustness to noise, and reduce overfitting when compared to a conventional GPSR implementation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Interpretability and uncertainty quantification in machine learning can
provide justification for decisions, promote scientific discovery and lead to a
better understanding of model behavior. Symbolic regression provides inherently
interpretable machine learning, but relatively little work has focused on the
use of symbolic regression on noisy data and the accompanying necessity to
quantify uncertainty. A new Bayesian framework for genetic-programming-based
symbolic regression (GPSR) is introduced that uses model evidence (i.e.,
marginal likelihood) to formulate replacement probability during the selection
phase of evolution. Model parameter uncertainty is automatically quantified,
enabling probabilistic predictions with each equation produced by the GPSR
algorithm. Model evidence is also quantified in this process, and its use is
shown to increase interpretability, improve robustness to noise, and reduce
overfitting when compared to a conventional GPSR implementation on both
numerical and physical experiments.
Related papers
- Addressing Misspecification in Simulation-based Inference through Data-driven Calibration [43.811367860375825]
Recent work has demonstrated that model misspecification can harm simulation-based inference's reliability.
This work introduces robust posterior estimation (ROPE), a framework that overcomes model misspecification with a small real-world calibration set of ground truth parameter measurements.
arXiv Detail & Related papers (2024-05-14T16:04:39Z) - Distribution-free risk assessment of regression-based machine learning
algorithms [6.507711025292814]
We focus on regression algorithms and the risk-assessment task of computing the probability of the true label lying inside an interval defined around the model's prediction.
We solve the risk-assessment problem using the conformal prediction approach, which provides prediction intervals that are guaranteed to contain the true label with a given probability.
arXiv Detail & Related papers (2023-10-05T13:57:24Z) - Adaptive Conditional Quantile Neural Processes [9.066817971329899]
Conditional Quantile Neural Processes (CQNPs) are a new member of the neural processes family.
We introduce an extension of quantile regression where the model learns to focus on estimating informative quantiles.
Experiments with real and synthetic datasets demonstrate substantial improvements in predictive performance.
arXiv Detail & Related papers (2023-05-30T06:19:19Z) - Controllable Neural Symbolic Regression [10.128755371375572]
In symbolic regression, the goal is to find an analytical expression that fits experimental data with the minimal use of mathematical symbols.
We propose a novel neural symbolic regression method, named Neural Symbolic Regression with Hypothesis (NSRwH)
Our experiments demonstrate that the proposed conditioned deep learning model outperforms its unconditioned counterparts in terms of accuracy.
arXiv Detail & Related papers (2023-04-20T14:20:48Z) - IB-UQ: Information bottleneck based uncertainty quantification for
neural function regression and neural operator learning [11.5992081385106]
We propose a novel framework for uncertainty quantification via information bottleneck (IB-UQ) for scientific machine learning tasks.
We incorporate the bottleneck by a confidence-aware encoder, which encodes inputs into latent representations according to the confidence of the input data.
We also propose a data augmentation based information bottleneck objective which can enhance the quality of the extrapolation uncertainty.
arXiv Detail & Related papers (2023-02-07T05:56:42Z) - Toward Physically Plausible Data-Driven Models: A Novel Neural Network
Approach to Symbolic Regression [2.7071541526963805]
This paper proposes a novel neural network-based symbolic regression method.
It constructs physically plausible models based on even very small training data sets and prior knowledge about the system.
We experimentally evaluate the approach on four test systems: the TurtleBot 2 mobile robot, the magnetic manipulation system, the equivalent resistance of two resistors in parallel, and the longitudinal force of the anti-lock braking system.
arXiv Detail & Related papers (2023-02-01T22:05:04Z) - Modeling Uncertain Feature Representation for Domain Generalization [49.129544670700525]
We show that our method consistently improves the network generalization ability on multiple vision tasks.
Our methods are simple yet effective and can be readily integrated into networks without additional trainable parameters or loss constraints.
arXiv Detail & Related papers (2023-01-16T14:25:02Z) - Stabilizing Machine Learning Prediction of Dynamics: Noise and
Noise-inspired Regularization [58.720142291102135]
Recent has shown that machine learning (ML) models can be trained to accurately forecast the dynamics of chaotic dynamical systems.
In the absence of mitigating techniques, this technique can result in artificially rapid error growth, leading to inaccurate predictions and/or climate instability.
We introduce Linearized Multi-Noise Training (LMNT), a regularization technique that deterministically approximates the effect of many small, independent noise realizations added to the model input during training.
arXiv Detail & Related papers (2022-11-09T23:40:52Z) - The Unreasonable Effectiveness of Deep Evidential Regression [72.30888739450343]
A new approach with uncertainty-aware regression-based neural networks (NNs) shows promise over traditional deterministic methods and typical Bayesian NNs.
We detail the theoretical shortcomings and analyze the performance on synthetic and real-world data sets, showing that Deep Evidential Regression is a quantification rather than an exact uncertainty.
arXiv Detail & Related papers (2022-05-20T10:10:32Z) - Evaluating probabilistic classifiers: Reliability diagrams and score
decompositions revisited [68.8204255655161]
We introduce the CORP approach, which generates provably statistically Consistent, Optimally binned, and Reproducible reliability diagrams in an automated way.
Corpor is based on non-parametric isotonic regression and implemented via the Pool-adjacent-violators (PAV) algorithm.
arXiv Detail & Related papers (2020-08-07T08:22:26Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
empirical optimization is central to modern machine learning, but its role in its success is still unclear.
We show that it commonly arises in parameters of discrete multiplicative noise due to variance.
A detailed analysis is conducted in which we describe on key factors, including recent step size, and data, all exhibit similar results on state-of-the-art neural network models.
arXiv Detail & Related papers (2020-06-11T09:58:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.