Controllable Neural Symbolic Regression
- URL: http://arxiv.org/abs/2304.10336v1
- Date: Thu, 20 Apr 2023 14:20:48 GMT
- Title: Controllable Neural Symbolic Regression
- Authors: Tommaso Bendinelli, Luca Biggio, Pierre-Alexandre Kamienny
- Abstract summary: In symbolic regression, the goal is to find an analytical expression that fits experimental data with the minimal use of mathematical symbols.
We propose a novel neural symbolic regression method, named Neural Symbolic Regression with Hypothesis (NSRwH)
Our experiments demonstrate that the proposed conditioned deep learning model outperforms its unconditioned counterparts in terms of accuracy.
- Score: 10.128755371375572
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In symbolic regression, the goal is to find an analytical expression that
accurately fits experimental data with the minimal use of mathematical symbols
such as operators, variables, and constants. However, the combinatorial space
of possible expressions can make it challenging for traditional evolutionary
algorithms to find the correct expression in a reasonable amount of time. To
address this issue, Neural Symbolic Regression (NSR) algorithms have been
developed that can quickly identify patterns in the data and generate
analytical expressions. However, these methods, in their current form, lack the
capability to incorporate user-defined prior knowledge, which is often required
in natural sciences and engineering fields. To overcome this limitation, we
propose a novel neural symbolic regression method, named Neural Symbolic
Regression with Hypothesis (NSRwH) that enables the explicit incorporation of
assumptions about the expected structure of the ground-truth expression into
the prediction process. Our experiments demonstrate that the proposed
conditioned deep learning model outperforms its unconditioned counterparts in
terms of accuracy while also providing control over the predicted expression
structure.
Related papers
- Latent Variable Sequence Identification for Cognitive Models with Neural Bayes Estimation [7.7227297059345466]
We present an approach that extends neural Bayes estimation to learn a direct mapping between experimental data and the targeted latent variable space.
Our work underscores that combining recurrent neural networks and simulation-based inference to identify latent variable sequences can enable researchers to access a wider class of cognitive models.
arXiv Detail & Related papers (2024-06-20T21:13:39Z) - Function-Space Regularization in Neural Networks: A Probabilistic
Perspective [51.133793272222874]
We show that we can derive a well-motivated regularization technique that allows explicitly encoding information about desired predictive functions into neural network training.
We evaluate the utility of this regularization technique empirically and demonstrate that the proposed method leads to near-perfect semantic shift detection and highly-calibrated predictive uncertainty estimates.
arXiv Detail & Related papers (2023-12-28T17:50:56Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - On the Trade-off Between Efficiency and Precision of Neural Abstraction [62.046646433536104]
Neural abstractions have been recently introduced as formal approximations of complex, nonlinear dynamical models.
We employ formal inductive synthesis procedures to generate neural abstractions that result in dynamical models with these semantics.
arXiv Detail & Related papers (2023-07-28T13:22:32Z) - Adaptive Conditional Quantile Neural Processes [9.066817971329899]
Conditional Quantile Neural Processes (CQNPs) are a new member of the neural processes family.
We introduce an extension of quantile regression where the model learns to focus on estimating informative quantiles.
Experiments with real and synthetic datasets demonstrate substantial improvements in predictive performance.
arXiv Detail & Related papers (2023-05-30T06:19:19Z) - Automated Learning of Interpretable Models with Quantified Uncertainty [0.0]
We introduce a new framework for genetic-programming-based symbolic regression (GPSR)
GPSR uses model evidence to formulate replacement probability during the selection phase of evolution.
It is shown to increase interpretability, improve robustness to noise, and reduce overfitting when compared to a conventional GPSR implementation.
arXiv Detail & Related papers (2022-04-12T19:56:42Z) - Neural-Network-Directed Genetic Programmer for Discovery of Governing
Equations [0.0]
faiGP is designed to leverage the properties of a function algebra that have been encoded into a grammar.
We quantify the impact of different types of regularizers, including a diversity metric adapted from studies of the transcriptome.
arXiv Detail & Related papers (2022-03-15T21:28:05Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Gradient Starvation: A Learning Proclivity in Neural Networks [97.02382916372594]
Gradient Starvation arises when cross-entropy loss is minimized by capturing only a subset of features relevant for the task.
This work provides a theoretical explanation for the emergence of such feature imbalance in neural networks.
arXiv Detail & Related papers (2020-11-18T18:52:08Z) - Learning identifiable and interpretable latent models of
high-dimensional neural activity using pi-VAE [10.529943544385585]
We propose a method that integrates key ingredients from latent models and traditional neural encoding models.
Our method, pi-VAE, is inspired by recent progress on identifiable variational auto-encoder.
We validate pi-VAE using synthetic data, and apply it to analyze neurophysiological datasets from rat hippocampus and macaque motor cortex.
arXiv Detail & Related papers (2020-11-09T22:00:38Z) - Relaxing the Constraints on Predictive Coding Models [62.997667081978825]
Predictive coding is an influential theory of cortical function which posits that the principal computation the brain performs is the minimization of prediction errors.
Standard implementations of the algorithm still involve potentially neurally implausible features such as identical forward and backward weights, backward nonlinear derivatives, and 1-1 error unit connectivity.
In this paper, we show that these features are not integral to the algorithm and can be removed either directly or through learning additional sets of parameters with Hebbian update rules without noticeable harm to learning performance.
arXiv Detail & Related papers (2020-10-02T15:21:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.