論文の概要: ASTROMER: A transformer-based embedding for the representation of light
curves
- arxiv url: http://arxiv.org/abs/2205.01677v1
- Date: Mon, 2 May 2022 21:58:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-06 06:36:40.650959
- Title: ASTROMER: A transformer-based embedding for the representation of light
curves
- Title(参考訳): ASTROMER:光曲線表現のためのトランスベースの埋め込み
- Authors: C. Donoso-Oliva, I. Becker, P. Protopapas, G. Cabrera-Vives, Vishnu
M., Harsh Vardhan
- Abstract要約: 本稿では,光曲線の表現を生成する変換器モデルASTROMERを提案する。
本ライブラリには,ディープラーニングモデルの性能向上に使用可能な事前学習モデルが含まれている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Taking inspiration from natural language embeddings, we present ASTROMER, a
transformer-based model to create representations of light curves. ASTROMER was
trained on millions of MACHO R-band samples, and it can be easily fine-tuned to
match specific domains associated with downstream tasks. As an example, this
paper shows the benefits of using pre-trained representations to classify
variable stars. In addition, we provide a python library including all
functionalities employed in this work. Our library includes the pre-trained
models that can be used to enhance the performance of deep learning models,
decreasing computational resources while achieving state-of-the-art results.
- Abstract(参考訳): 自然言語の埋め込みからインスピレーションを得て,光曲線の表現を生成する変換器モデルASTROMERを提案する。
ASTROMERは数百万のMACHO Rバンドのサンプルで訓練されており、下流タスクに関連する特定のドメインと容易に一致するように微調整することができる。
一例として、可変星の分類に事前訓練された表現を用いることの利点を示す。
また,本研究で使用されるすべての機能を含むピソンライブラリも提供する。
このライブラリには、ディープラーニングモデルの性能向上や計算資源の削減、最先端の結果の達成に使用できる事前学習モデルが含まれている。
関連論文リスト
- MLP-KAN: Unifying Deep Representation and Function Learning [7.634331640151854]
そこで本研究では,手動モデル選択の必要性を解消する統一手法を提案する。
表現学習にMLP(Multi-Layer Perceptrons)と関数学習にKolmogorov-Arnold Networks(KANsogo)を統合することにより,優れた結果が得られた。
論文 参考訳(メタデータ) (2024-10-03T22:22:43Z) - Disentanglement with Factor Quantized Variational Autoencoders [11.086500036180222]
本稿では,生成因子に関する基礎的真理情報をモデルに提供しない離散変分オートエンコーダ(VAE)モデルを提案する。
本研究では, 離散表現を学習する上で, 連続表現を学習することの利点を実証する。
FactorQVAEと呼ばれる手法は,最適化に基づく不整合アプローチと離散表現学習を組み合わせた最初の手法である。
論文 参考訳(メタデータ) (2024-09-23T09:33:53Z) - Rethinking Pre-trained Feature Extractor Selection in Multiple Instance Learning for Whole Slide Image Classification [2.6703221234079946]
複数インスタンス学習(MIL)は、パッチレベルのアノテーションを必要とせずに、ギガピクセル全体のスライド画像(WSI)分類に好まれる方法となっている。
本研究では,3次元のMIL特徴抽出器(事前学習データセット,バックボーンモデル,事前学習手法)を体系的に評価する。
この結果から,堅牢な自己教師付き学習(SSL)手法の選択は,ドメイン内事前学習データセットのみに依存するよりも,パフォーマンスに大きな影響を与えることが明らかとなった。
論文 参考訳(メタデータ) (2024-08-02T10:34:23Z) - NPEFF: Non-Negative Per-Example Fisher Factorization [52.44573961263344]
エンド・ツー・エンドの微分可能モデルに容易に適用可能な,NPEFFと呼ばれる新しい解釈可能性手法を提案する。
我々はNPEFFが言語モデルと視覚モデルの実験を通して解釈可能なチューニングを持つことを実証した。
論文 参考訳(メタデータ) (2023-10-07T02:02:45Z) - The Languini Kitchen: Enabling Language Modelling Research at Different
Scales of Compute [66.84421705029624]
本稿では,アクセル時間で測定された等価計算に基づくモデル比較を可能にする実験的プロトコルを提案する。
私たちは、既存の学術的ベンチマークを上回り、品質、多様性、文書の長さで上回る、大規模で多様で高品質な書籍データセットを前処理します。
この研究は、GPT-2アーキテクチャから派生したフィードフォワードモデルと、10倍のスループットを持つ新しいLSTMの形式でのリカレントモデルという2つのベースラインモデルも提供する。
論文 参考訳(メタデータ) (2023-09-20T10:31:17Z) - R-Cut: Enhancing Explainability in Vision Transformers with Relationship
Weighted Out and Cut [14.382326829600283]
リレーションウェイトアウト」と「カット」の2つのモジュールを紹介します。
Cut"モジュールは、位置、テクスチャ、色などの要素を考慮して、きめ細かい特徴分解を行う。
我々は,ImageNetデータセット上で定性的かつ定量的な実験を行い,本手法の有効性を検証した。
論文 参考訳(メタデータ) (2023-07-18T08:03:51Z) - Language models are weak learners [71.33837923104808]
本研究では,プロンプトベースの大規模言語モデルは弱い学習者として効果的に動作可能であることを示す。
これらのモデルをブースティングアプローチに組み込むことで、モデル内の知識を活用して、従来のツリーベースのブースティングよりも優れています。
結果は、プロンプトベースのLLMが、少数の学習者だけでなく、より大きな機械学習パイプラインのコンポーネントとして機能する可能性を示している。
論文 参考訳(メタデータ) (2023-06-25T02:39:19Z) - Towards Foundation Models for Scientific Machine Learning:
Characterizing Scaling and Transfer Behavior [32.74388989649232]
我々は、科学機械学習(SciML)の応用において、事前学習をどのように利用できるかを研究する。
これらのモデルを微調整すると、モデルのサイズが大きくなるにつれてパフォーマンスが向上することがわかった。
論文 参考訳(メタデータ) (2023-06-01T00:32:59Z) - Multitask Adaptation by Retrospective Exploration with Learned World
Models [77.34726150561087]
本稿では,タスク非依存ストレージから取得したMBRLエージェントのトレーニングサンプルを提供するRAMaというメタ学習型アドレッシングモデルを提案する。
このモデルは、期待されるエージェントのパフォーマンスを最大化するために、ストレージから事前のタスクを解く有望な軌道を選択することで訓練される。
論文 参考訳(メタデータ) (2021-10-25T20:02:57Z) - Combining Feature and Instance Attribution to Detect Artifacts [62.63504976810927]
トレーニングデータアーティファクトの識別を容易にする手法を提案する。
提案手法は,トレーニングデータのアーティファクトの発見に有効であることを示す。
我々は,これらの手法が実際にNLP研究者にとって有用かどうかを評価するために,小規模なユーザスタディを実施している。
論文 参考訳(メタデータ) (2021-07-01T09:26:13Z) - Exploring Complementary Strengths of Invariant and Equivariant
Representations for Few-Shot Learning [96.75889543560497]
多くの現実世界では、多数のラベル付きサンプルの収集は不可能です。
少ないショット学習はこの問題に対処するための主要なアプローチであり、目的は限られた数のサンプルの存在下で新しいカテゴリに迅速に適応することです。
幾何学的変換の一般集合に対する等分散と不変性を同時に強制する新しい訓練機構を提案する。
論文 参考訳(メタデータ) (2021-03-01T21:14:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。