論文の概要: Hypercomplex Image-to-Image Translation
- arxiv url: http://arxiv.org/abs/2205.02087v1
- Date: Wed, 4 May 2022 14:28:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-05 17:40:42.109229
- Title: Hypercomplex Image-to-Image Translation
- Title(参考訳): 超複素画像から画像への変換
- Authors: Eleonora Grassucci, Luigi Sigillo, Aurelio Uncini, Danilo Comminiello
- Abstract要約: 画像から画像への変換(I2I)は、コンテンツ表現を入力ドメインから出力ドメインに転送することを目的としている。
この課題で卓越した結果を得た最近のI2I生成モデルは、それぞれ数千万のパラメータを持つ多様な深層ネットワークで構成されている。
画像次元間の既往の関係を保存できる軽量I2I生成モデルを定義するために,超複素代数特性を活用することを提案する。
- 参考スコア(独自算出の注目度): 13.483068375377362
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image-to-image translation (I2I) aims at transferring the content
representation from an input domain to an output one, bouncing along different
target domains. Recent I2I generative models, which gain outstanding results in
this task, comprise a set of diverse deep networks each with tens of million
parameters. Moreover, images are usually three-dimensional being composed of
RGB channels and common neural models do not take dimensions correlation into
account, losing beneficial information. In this paper, we propose to leverage
hypercomplex algebra properties to define lightweight I2I generative models
capable of preserving pre-existing relations among image dimensions, thus
exploiting additional input information. On manifold I2I benchmarks, we show
how the proposed Quaternion StarGANv2 and parameterized hypercomplex StarGANv2
(PHStarGANv2) reduce parameters and storage memory amount while ensuring high
domain translation performance and good image quality as measured by FID and
LPIPS scores. Full code is available at: https://github.com/ispamm/HI2I.
- Abstract(参考訳): Image-to-image Translation (I2I)は、入力ドメインから出力ドメインへのコンテンツ表現の転送を目的とし、異なるターゲットドメインに沿ってバウンドする。
この課題で顕著な結果を得た最近のI2I生成モデルは、それぞれ数千万のパラメータを持つ多様な深層ネットワークで構成されている。
さらに、画像は通常、rgbチャネルからなる3次元であり、共通の神経モデルは次元相関を考慮せず、有益な情報を失う。
本稿では,超複素代数特性を利用して,画像次元間の既存関係を保ち,付加的な入力情報を利用する軽量I2I生成モデルを提案する。
提案する四元数StarGANv2とパラメータ化ハイパーコンプレックスStarGANv2(PHStarGANv2)は,高領域翻訳性能とFIDおよびLPIPSスコアによる画像品質を確保しつつ,パラメータと記憶メモリ量を削減する方法を示す。
完全なコードは、https://github.com/ispamm/HI2Iで入手できる。
関連論文リスト
- OminiControl: Minimal and Universal Control for Diffusion Transformer [68.3243031301164]
OminiControlは、イメージ条件をトレーニング済みのDiffusion Transformer(DiT)モデルに統合するフレームワークである。
コアとなるOminiControlはパラメータ再利用機構を活用しており、強力なバックボーンとしてイメージ条件をエンコードすることができる。
OminiControlは、主観駆動生成や空間的に整合した条件を含む、幅広いイメージコンディショニングタスクを統一的に処理する。
論文 参考訳(メタデータ) (2024-11-22T17:55:15Z) - Image-GS: Content-Adaptive Image Representation via 2D Gaussians [55.15950594752051]
本稿では,コンテンツ適応型画像表現であるImage-GSを提案する。
異方性2Dガウスアンをベースとして、Image-GSは高いメモリ効率を示し、高速なランダムアクセスをサポートし、自然なレベルのディテールスタックを提供する。
画像-GSの一般的な効率性と忠実性は、最近のニューラルイメージ表現と業界標準テクスチャ圧縮機に対して検証される。
この研究は、機械認識、アセットストリーミング、コンテンツ生成など、適応的な品質とリソース制御を必要とする新しいアプリケーションを開発するための洞察を与えてくれることを願っている。
論文 参考訳(メタデータ) (2024-07-02T00:45:21Z) - The R2D2 deep neural network series paradigm for fast precision imaging in radio astronomy [1.7249361224827533]
最近の画像再構成技術は、CLEANの能力をはるかに超えて、画像の精度が著しく向上している。
高ダイナミックレンジイメージングのためのResidual-to-Residual DNNシリーズと呼ばれる新しいディープラーニング手法を導入する。
高精度を実現するためのR2D2の能力は、超大型アレイ(VLA)を用いた様々な画像観測環境においてシミュレーションで実証されている。
論文 参考訳(メタデータ) (2024-03-08T16:57:54Z) - Mutual-Guided Dynamic Network for Image Fusion [51.615598671899335]
画像融合のための新しい相互誘導動的ネットワーク(MGDN)を提案する。
5つのベンチマークデータセットによる実験結果から,提案手法は4つの画像融合タスクにおいて既存手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-08-24T03:50:37Z) - Dual Aggregation Transformer for Image Super-Resolution [92.41781921611646]
画像SRのための新しいトランスモデルDual Aggregation Transformerを提案する。
DATは、ブロック間およびブロック内二重方式で、空間次元とチャネル次元にまたがる特徴を集約する。
我々のDATは現在の手法を超越している。
論文 参考訳(メタデータ) (2023-08-07T07:39:39Z) - Deep Axial Hypercomplex Networks [1.370633147306388]
近年の研究では,超複雑ネットワークによる表現能力の向上が図られている。
本稿では、四元数2D畳み込み加群を2つの連続ベクトルマップ1D畳み込み加群に分解することで、このコストを削減する。
両ネットワークを組み込んで提案した超複素ネットワークは, 深部軸超複素ネットワークを構築するために構築可能な新しいアーキテクチャである。
論文 参考訳(メタデータ) (2023-01-11T18:31:00Z) - A Dual Neighborhood Hypergraph Neural Network for Change Detection in
VHR Remote Sensing Images [12.222830717774118]
本稿では,双対近傍ハイパーグラフニューラルネットワークを提案する。
提案手法は,多くの最先端手法と比較して有効性とロバスト性が高い。
論文 参考訳(メタデータ) (2022-02-27T02:39:08Z) - Adversarial Generation of Continuous Images [31.92891885615843]
本稿では,INRに基づく画像デコーダ構築のための2つの新しいアーキテクチャ手法を提案する。
私たちは、最先端の連続画像GANを構築するためにそれらを使用します。
提案したINR-GANアーキテクチャは連続画像生成装置の性能を数倍改善する。
論文 参考訳(メタデータ) (2020-11-24T11:06:40Z) - Adaptive Context-Aware Multi-Modal Network for Depth Completion [107.15344488719322]
我々は,観測された空間コンテキストを捉えるために,グラフ伝搬を採用することを提案する。
次に、注意機構を伝搬に適用し、ネットワークが文脈情報を適応的にモデル化することを奨励する。
最後に、抽出したマルチモーダル特徴を効果的に活用するための対称ゲート融合戦略を導入する。
本稿では,Adaptive Context-Aware Multi-Modal Network (ACMNet) を2つのベンチマークで評価した。
論文 参考訳(メタデータ) (2020-08-25T06:00:06Z) - Locally Masked Convolution for Autoregressive Models [107.4635841204146]
LMConvは標準的な2Dコンボリューションの簡単な修正であり、任意のマスクを画像の各位置の重みに適用することができる。
我々は,パラメータを共有するが生成順序が異なる分布推定器のアンサンブルを学習し,全画像密度推定の性能を向上させる。
論文 参考訳(メタデータ) (2020-06-22T17:59:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。