論文の概要: Deep Axial Hypercomplex Networks
- arxiv url: http://arxiv.org/abs/2301.04626v1
- Date: Wed, 11 Jan 2023 18:31:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-12 17:01:28.353850
- Title: Deep Axial Hypercomplex Networks
- Title(参考訳): 深部軸超複雑ネットワーク
- Authors: Nazmul Shahadat, Anthony S. Maida
- Abstract要約: 近年の研究では,超複雑ネットワークによる表現能力の向上が図られている。
本稿では、四元数2D畳み込み加群を2つの連続ベクトルマップ1D畳み込み加群に分解することで、このコストを削減する。
両ネットワークを組み込んで提案した超複素ネットワークは, 深部軸超複素ネットワークを構築するために構築可能な新しいアーキテクチャである。
- 参考スコア(独自算出の注目度): 1.370633147306388
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Over the past decade, deep hypercomplex-inspired networks have enhanced
feature extraction for image classification by enabling weight sharing across
input channels. Recent works make it possible to improve representational
capabilities by using hypercomplex-inspired networks which consume high
computational costs. This paper reduces this cost by factorizing a quaternion
2D convolutional module into two consecutive vectormap 1D convolutional
modules. Also, we use 5D parameterized hypercomplex multiplication based fully
connected layers. Incorporating both yields our proposed hypercomplex network,
a novel architecture that can be assembled to construct deep axial-hypercomplex
networks (DANs) for image classifications. We conduct experiments on CIFAR
benchmarks, SVHN, and Tiny ImageNet datasets and achieve better performance
with fewer trainable parameters and FLOPS. Our proposed model achieves almost
2% higher performance for CIFAR and SVHN datasets, and more than 3% for the
ImageNet-Tiny dataset and takes six times fewer parameters than the real-valued
ResNets. Also, it shows state-of-the-art performance on CIFAR benchmarks in
hypercomplex space.
- Abstract(参考訳): 過去10年にわたり、ディープ・ハイパーコンプレックスに触発されたネットワークは、入力チャネル間の重み共有を可能にして画像分類のための特徴抽出を強化してきた。
近年の研究では,高計算コストを消費する超複雑ネットワークを用いることで,表現能力の向上が図られている。
本稿では、四元数2D畳み込み加群を2つの連続ベクトルマップ1D畳み込み加群に分解することで、このコストを削減する。
また、5次元パラメータ化ハイパーコンプレックス乗算に基づく完全連結層を用いる。
両者を組み込むことで、画像分類のための深部軸超複素ネットワーク(DAN)を構築するために構築できる新しいアーキテクチャである、提案した超複素ネットワークが得られる。
我々は、CIFARベンチマーク、SVHN、Tiny ImageNetデータセットで実験を行い、トレーニング可能なパラメータやFLOPSを少なくして、より良いパフォーマンスを実現する。
提案モデルでは,CIFARデータセットとSVHNデータセットでは約2%,ImageNet-Tinyデータセットでは3%以上,実数値のResNetよりも6倍少ないパラメータが得られた。
また、超複素空間におけるCIFARベンチマークの最先端性能を示す。
関連論文リスト
- DVMSR: Distillated Vision Mamba for Efficient Super-Resolution [7.551130027327461]
本研究では,ビジョン・マンバと蒸留戦略を組み込んだ新しい軽量画像SRネットワークであるDVMSRを提案する。
提案したDVMSRは,モデルパラメータの観点から,最先端の効率的なSR手法より優れている。
論文 参考訳(メタデータ) (2024-05-05T17:34:38Z) - ESDMR-Net: A Lightweight Network With Expand-Squeeze and Dual Multiscale
Residual Connections for Medical Image Segmentation [7.921517156237902]
本稿では,拡張型マルチスケール残差ネットワーク(ESDMR-Net)を提案する。
完全な畳み込みネットワークであり、モバイルデバイスのようなリソースに制約のあるコンピューティングハードウェアに適している。
5つの異なる応用例から7つのデータセットについて実験を行った。
論文 参考訳(メタデータ) (2023-12-17T02:15:49Z) - Enhancing ResNet Image Classification Performance by using Parameterized
Hypercomplex Multiplication [1.370633147306388]
本稿ではResNetアーキテクチャについて検討し、パラメータ化ハイパープレックス乗算を残差、四元数、ベクトルマップ畳み込みニューラルネットワークのバックエンドに組み込んでその効果を評価する。
PHMは、小型で低解像度のCIFAR 10/100や高解像度の ImageNet や ASL など、複数の画像データセットの分類精度を向上し、超複素ネットワークにおける最先端の精度を実現することができることを示す。
論文 参考訳(メタデータ) (2023-01-11T18:24:07Z) - Hypercomplex Image-to-Image Translation [13.483068375377362]
画像から画像への変換(I2I)は、コンテンツ表現を入力ドメインから出力ドメインに転送することを目的としている。
この課題で卓越した結果を得た最近のI2I生成モデルは、それぞれ数千万のパラメータを持つ多様な深層ネットワークで構成されている。
画像次元間の既往の関係を保存できる軽量I2I生成モデルを定義するために,超複素代数特性を活用することを提案する。
論文 参考訳(メタデータ) (2022-05-04T14:28:50Z) - Hybrid Pixel-Unshuffled Network for Lightweight Image Super-Resolution [64.54162195322246]
畳み込みニューラルネットワーク(CNN)は画像超解像(SR)において大きな成功を収めた
ほとんどのディープCNNベースのSRモデルは、高い性能を得るために大量の計算を処理している。
SRタスクに効率的かつ効果的なダウンサンプリングモジュールを導入することで,HPUN(Hybrid Pixel-Unshuffled Network)を提案する。
論文 参考訳(メタデータ) (2022-03-16T20:10:41Z) - A New Backbone for Hyperspectral Image Reconstruction [90.48427561874402]
3次元ハイパースペクトル画像(HSI)再構成は、スナップショット圧縮画像の逆過程を指す。
空間/スペクトル不変Residual U-Net、すなわちSSI-ResU-Netを提案する。
SSI-ResU-Net は浮動小数点演算の 77.3% 以上で競合する性能を実現する。
論文 参考訳(メタデータ) (2021-08-17T16:20:51Z) - CondenseNet V2: Sparse Feature Reactivation for Deep Networks [87.38447745642479]
高密度接続によるディープネットワークの機能再利用は、高い計算効率を達成する効果的な方法である。
スパース機能再活性化(SFR)と呼ばれる代替アプローチを提案し、再利用機能の有用性を積極的に高めることを目指しています。
提案手法は画像分類(ImageNet, CIFAR)とオブジェクト検出(MSCOCO)において,理論的効率と実用的速度の両面で有望な性能を達成できることを示す。
論文 参考訳(メタデータ) (2021-04-09T14:12:43Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
本稿では、離散コサイン変換(dct)領域の係数に応じて入力を複数の部分に分割する新しい周波数認識動的ネットワークについて検討する。
実際、高周波部は高価な操作で処理され、低周波部は計算負荷を軽減するために安価な操作が割り当てられる。
ベンチマークSISRモデルおよびデータセット上での実験は、周波数認識動的ネットワークが様々なSISRニューラルネットワークに使用できることを示している。
論文 参考訳(メタデータ) (2021-03-15T12:54:26Z) - Lightweight Single-Image Super-Resolution Network with Attentive
Auxiliary Feature Learning [73.75457731689858]
本稿では,SISR の注意補助機能 (A$2$F) に基づく計算効率が高く正確なネットワークを構築した。
大規模データセットを用いた実験結果から,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-11-13T06:01:46Z) - Real Image Super Resolution Via Heterogeneous Model Ensemble using
GP-NAS [63.48801313087118]
本稿では,高密度スキップ接続を有するディープ残差ネットワークを用いた画像超解像法を提案する。
提案手法は、AIM 2020 Real Image Super-Resolution Challengeの3トラックで1位を獲得した。
論文 参考訳(メタデータ) (2020-09-02T22:33:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。