論文の概要: Evaluating Transferability for Covid 3D Localization Using CT SARS-CoV-2
segmentation models
- arxiv url: http://arxiv.org/abs/2205.02152v1
- Date: Wed, 4 May 2022 16:15:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-05 14:22:22.509279
- Title: Evaluating Transferability for Covid 3D Localization Using CT SARS-CoV-2
segmentation models
- Title(参考訳): CTSARS-CoV-2セグメンテーションモデルを用いた3次元符号化の伝達性評価
- Authors: Constantine Maganaris, Eftychios Protopapadakis, Nikolaos Bakalos,
Nikolaos Doulamis, Dimitris Kalogeras and Aikaterini Angeli
- Abstract要約: 本稿では,CT画像中の肺炎感染領域のセマンティックセグメンテーションにおけるディープラーニングモデル転送可能性の有用性について検討する。
本研究は,特定のCTデータセットを用いて,トレーニング済みのU-Netアーキテクチャを用いて,異なるデータセットの画像に対するCovid-19副作用を特定することの有効性を検討する。
- 参考スコア(独自算出の注目度): 8.026717228180935
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent studies indicate that detecting radiographic patterns on CT scans can
yield high sensitivity and specificity for COVID-19 localization. In this
paper, we investigate the appropriateness of deep learning models
transferability, for semantic segmentation of pneumonia-infected areas in CT
images. Transfer learning allows for the fast initialization/ reutilization of
detection models, given that large volumes of training are not available. Our
work explores the efficacy of using pre-trained U-Net architectures, on a
specific CT data set, for identifying Covid-19 side-effects over images from
different datasets. Experimental results indicate improvement in the
segmentation accuracy of identifying COVID-19 infected regions.
- Abstract(参考訳): 近年の研究では、CTスキャンにおける放射線画像パターンの検出は、新型コロナウイルスの局所化に高い感度と特異性をもたらすことが示されている。
本稿では,ct画像における肺炎感染領域の意味セグメンテーションのための,深層学習モデルの転送可能性について検討する。
トランスファー学習は、大量のトレーニングが利用できないため、検出モデルの迅速な初期化と再利用を可能にする。
本研究は,特定のCTデータセットを用いて,トレーニング済みのU-Netアーキテクチャを用いて,異なるデータセットの画像に対するCovid-19副作用を特定することの有効性を検討する。
実験結果から、新型コロナウイルス感染地域を特定するためのセグメンテーション精度の改善が示唆された。
関連論文リスト
- PrepNet: A Convolutional Auto-Encoder to Homogenize CT Scans for
Cross-Dataset Medical Image Analysis [0.22485007639406518]
新型コロナウイルスの診断はPCR検査で効率的に行えるようになったが、このユースケースは、データの多様性を克服する方法論の必要性を実証するものだ。
本稿では,CTスキャンに最小限の変更を同時に導入しながら,イメージング技術によって引き起こされる差を解消することを目的とした,新しい生成手法を提案する。
論文 参考訳(メタデータ) (2022-08-19T15:49:47Z) - A Novel Automated Classification and Segmentation for COVID-19 using 3D
CT Scans [5.5957919486531935]
新型コロナウイルス(COVID-19)による肺のCT画像では、地上ガラスの濁度が専門的な診断を必要とする最も一般的な発見である。
一部の研究者は、専門知識の欠如による専門的診断専門医の代替となる、関連するDLモデルを提案する。
肺病変の分類では, 新型コロナウイルス, 肺炎, 正常の3種類で94.52%の精度が得られた。
論文 参考訳(メタデータ) (2022-08-04T22:14:18Z) - COVIDx CT-3: A Large-scale, Multinational, Open-Source Benchmark Dataset
for Computer-aided COVID-19 Screening from Chest CT Images [82.74877848011798]
胸部CT画像から新型コロナウイルスの症例を検出するための大規模ベンチマークデータセットであるCOVIDx CT-3を紹介する。
COVIDx CT-3には、少なくとも17カ国で6,068人の患者から431,205個のCTスライスが含まれている。
我々は, COVIDx CT-3データセットのデータ多様性と潜在的なバイアスについて検討し, 地理的, 集団的不均衡について検討した。
論文 参考訳(メタデータ) (2022-06-07T06:35:48Z) - CNN Filter Learning from Drawn Markers for the Detection of Suggestive
Signs of COVID-19 in CT Images [58.720142291102135]
畳み込みニューラルネットワーク(CNN)のフィルタを推定するために,大規模な注釈付きデータセットやバックプロパゲーションを必要としない手法を提案する。
少数のCT画像に対して、ユーザは、代表的な正常領域と異常領域にマーカーを描画する。
本発明の方法は、カーネルがマークされたものに似た拡張領域に特有な一連の畳み込み層からなる特徴抽出器を生成する。
論文 参考訳(メタデータ) (2021-11-16T15:03:42Z) - COVID-19 identification from volumetric chest CT scans using a
progressively resized 3D-CNN incorporating segmentation, augmentation, and
class-rebalancing [4.446085353384894]
新型コロナウイルスは世界的なパンデミックの流行だ。
高い感度のコンピュータ支援スクリーニングツールは、疾患の診断と予後に不可欠である。
本稿では,3次元畳み込みニューラルネットワーク(CNN)に基づく分類手法を提案する。
論文 参考訳(メタデータ) (2021-02-11T18:16:18Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
3D胸部CTスキャン分類のための3D DLモデルを自動的に検索するための差別化可能なニューラルネットワーク探索(DNAS)フレームワークを提案する。
また,我々のモデルのクラスアクティベーションマッピング(cam)技術を利用して,結果の解釈可能性を提供する。
論文 参考訳(メタデータ) (2021-01-14T03:45:01Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
新型コロナの診断を改善するための多段階集中移動学習フレームワークを提案する。
提案するフレームワークは、複数のソースタスクと異なるドメインのデータから知識を学習し、正確な診断モデルを訓練する3つの段階からなる。
本稿では,肺CT画像のマルチスケール表現を学習するための自己教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2021-01-14T01:39:19Z) - COVIDNet-CT: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest CT Images [75.74756992992147]
我々は、胸部CT画像からCOVID-19の症例を検出するのに適した、深層畳み込みニューラルネットワークアーキテクチャであるCOVIDNet-CTを紹介した。
また,中国生体情報センターが収集したCT画像データから得られたベンチマークCT画像データセットであるCOVIDx-CTも紹介した。
論文 参考訳(メタデータ) (2020-09-08T15:49:55Z) - Label-Free Segmentation of COVID-19 Lesions in Lung CT [17.639558085838583]
ピクセルレベルの異常モデルを用いて,CTで新型コロナウイルスの病変を分類するためのラベルフリーアプローチを提案する。
我々のモデリングは、気管と血管の一部が、病変が属する高強度範囲にあり、強いパターンを示すという観察に着想を得たものである。
実験では,NormNetの有効性を3つの異なるデータセットで検証した。
論文 参考訳(メタデータ) (2020-09-08T12:38:34Z) - Radiologist-Level COVID-19 Detection Using CT Scans with Detail-Oriented
Capsule Networks [6.435530400792993]
我々はDetail-Oriented Capsule Networks (DECAPS) を提案する。
我々のネットワークは、分類精度を高めるためのいくつかのアーキテクチャの改善とCapsule Networksの強みを組み合わせる。
ROC曲線では,84.3%の精度,91.5%のリコール,96.1%の領域が達成され,最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2020-04-16T00:48:32Z) - Residual Attention U-Net for Automated Multi-Class Segmentation of
COVID-19 Chest CT Images [46.844349956057776]
新型コロナウイルス感染症(COVID-19)は世界中で急速に広がり、公衆衛生や経済に大きな影響を及ぼしている。
新型コロナウイルスによる肺感染症を効果的に定量化する研究はいまだにない。
複数の新型コロナウイルス感染症領域の自動セグメンテーションのための新しいディープラーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-04-12T16:24:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。