Wavelet neural operator: a neural operator for parametric partial
differential equations
- URL: http://arxiv.org/abs/2205.02191v1
- Date: Wed, 4 May 2022 17:13:59 GMT
- Title: Wavelet neural operator: a neural operator for parametric partial
differential equations
- Authors: Tapas Tripura and Souvik Chakraborty
- Abstract summary: We introduce a novel operator learning algorithm referred to as the Wavelet Neural Operator (WNO)
WNO harnesses the superiority of the wavelets in time-frequency localization of the functions and enables accurate tracking of patterns in spatial domain.
The proposed approach is used to build a digital twin capable of predicting Earth's air temperature based on available historical data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With massive advancements in sensor technologies and Internet-of-things, we
now have access to terabytes of historical data; however, there is a lack of
clarity in how to best exploit the data to predict future events. One possible
alternative in this context is to utilize operator learning algorithm that
directly learn nonlinear mapping between two functional spaces; this
facilitates real-time prediction of naturally arising complex evolutionary
dynamics. In this work, we introduce a novel operator learning algorithm
referred to as the Wavelet Neural Operator (WNO) that blends integral kernel
with wavelet transformation. WNO harnesses the superiority of the wavelets in
time-frequency localization of the functions and enables accurate tracking of
patterns in spatial domain and effective learning of the functional mappings.
Since the wavelets are localized in both time/space and frequency, WNO can
provide high spatial and frequency resolution. This offers learning of the
finer details of the parametric dependencies in the solution for complex
problems. The efficacy and robustness of the proposed WNO are illustrated on a
wide array of problems involving Burger's equation, Darcy flow, Navier-Stokes
equation, Allen-Cahn equation, and Wave advection equation. Comparative study
with respect to existing operator learning frameworks are presented. Finally,
the proposed approach is used to build a digital twin capable of predicting
Earth's air temperature based on available historical data.
Related papers
- Spectral-Refiner: Fine-Tuning of Accurate Spatiotemporal Neural Operator for Turbulent Flows [6.961408873053586]
We propose a new Stemporal Neural Operator (SFNO) that learns maps between Bochner spaces, and a new learning framework to address these issues.
This new paradigm leverages wisdom from traditional numerical PDE theory and techniques to refine the pipeline of commonly adopted end-to-end neural operator training and evaluations.
Numerical experiments on commonly used benchmarks for the 2D NSE demonstrate significant improvements in both computational efficiency and accuracy, compared to end-to-end evaluation and traditional numerical PDE solvers.
arXiv Detail & Related papers (2024-05-27T14:33:06Z) - Neural Operators with Localized Integral and Differential Kernels [77.76991758980003]
We present a principled approach to operator learning that can capture local features under two frameworks.
We prove that we obtain differential operators under an appropriate scaling of the kernel values of CNNs.
To obtain local integral operators, we utilize suitable basis representations for the kernels based on discrete-continuous convolutions.
arXiv Detail & Related papers (2024-02-26T18:59:31Z) - Waveformer for modelling dynamical systems [1.0878040851638]
We propose "waveformer", a novel operator learning approach for learning solutions of dynamical systems.
The proposed waveformer exploits wavelet transform to capture the spatial multi-scale behavior of the solution field and transformers.
We show that the proposed Waveformer can learn the solution operator with high accuracy, outperforming existing state-of-the-art operator learning algorithms by up to an order.
arXiv Detail & Related papers (2023-10-08T03:34:59Z) - Geometry-Informed Neural Operator for Large-Scale 3D PDEs [76.06115572844882]
We propose the geometry-informed neural operator (GINO) to learn the solution operator of large-scale partial differential equations.
We successfully trained GINO to predict the pressure on car surfaces using only five hundred data points.
arXiv Detail & Related papers (2023-09-01T16:59:21Z) - Spherical Fourier Neural Operators: Learning Stable Dynamics on the
Sphere [53.63505583883769]
We introduce Spherical FNOs (SFNOs) for learning operators on spherical geometries.
SFNOs have important implications for machine learning-based simulation of climate dynamics.
arXiv Detail & Related papers (2023-06-06T16:27:17Z) - Physics informed WNO [0.0]
We propose a physics-informed Wavelet Operator (WNO) for learning the solution operators of families of parametric partial differential equations (PDEs) without labeled training data.
The efficacy of the framework is validated and illustrated with four nonlinear neural systems relevant to various fields of engineering and science.
arXiv Detail & Related papers (2023-02-12T14:31:50Z) - Forecasting subcritical cylinder wakes with Fourier Neural Operators [58.68996255635669]
We apply a state-of-the-art operator learning technique to forecast the temporal evolution of experimentally measured velocity fields.
We find that FNOs are capable of accurately predicting the evolution of experimental velocity fields throughout the range of Reynolds numbers tested.
arXiv Detail & Related papers (2023-01-19T20:04:36Z) - Solving Seismic Wave Equations on Variable Velocity Models with Fourier
Neural Operator [3.2307366446033945]
We propose a new framework paralleled Fourier neural operator (PFNO) for efficiently training the FNO-based solver.
Numerical experiments demonstrate the high accuracy of both FNO and PFNO with complicated velocity models.
PFNO admits higher computational efficiency on large-scale testing datasets, compared with the traditional finite-difference method.
arXiv Detail & Related papers (2022-09-25T22:25:57Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Seismic wave propagation and inversion with Neural Operators [7.296366040398878]
We develop a prototype framework for learning general solutions using a recently developed machine learning paradigm called Neural Operator.
A trained Neural Operator can compute a solution in negligible time for any velocity structure or source location.
We illustrate the method with the 2D acoustic wave equation and demonstrate the method's applicability to seismic tomography.
arXiv Detail & Related papers (2021-08-11T19:17:39Z) - Fourier Neural Operator for Parametric Partial Differential Equations [57.90284928158383]
We formulate a new neural operator by parameterizing the integral kernel directly in Fourier space.
We perform experiments on Burgers' equation, Darcy flow, and Navier-Stokes equation.
It is up to three orders of magnitude faster compared to traditional PDE solvers.
arXiv Detail & Related papers (2020-10-18T00:34:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.