論文の概要: FAITH: Few-Shot Graph Classification with Hierarchical Task Graphs
- arxiv url: http://arxiv.org/abs/2205.02435v2
- Date: Sat, 7 May 2022 01:51:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-10 12:00:47.254503
- Title: FAITH: Few-Shot Graph Classification with Hierarchical Task Graphs
- Title(参考訳): FAITH:階層型タスクグラフを用いたFew-Shotグラフ分類
- Authors: Song Wang, Yushun Dong, Xiao Huang, Chen Chen, Jundong Li
- Abstract要約: 少数ショットグラフ分類はグラフのクラスを予測することを目的としており、各クラスに限定されたラベル付きグラフが与えられる。
本稿では,階層的なタスクグラフを構築することにより,タスク相関をキャプチャする新しい数ショット学習フレームワークFAITHを提案する。
4つの一般的な数ショットグラフ分類データセットの実験は、他の最先端のベースラインよりもFAITHの方が優れていることを示した。
- 参考スコア(独自算出の注目度): 39.576675425158754
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Few-shot graph classification aims at predicting classes for graphs, given
limited labeled graphs for each class. To tackle the bottleneck of label
scarcity, recent works propose to incorporate few-shot learning frameworks for
fast adaptations to graph classes with limited labeled graphs. Specifically,
these works propose to accumulate meta-knowledge across diverse meta-training
tasks, and then generalize such meta-knowledge to the target task with a
disjoint label set. However, existing methods generally ignore task
correlations among meta-training tasks while treating them independently.
Nevertheless, such task correlations can advance the model generalization to
the target task for better classification performance. On the other hand, it
remains non-trivial to utilize task correlations due to the complex components
in a large number of meta-training tasks. To deal with this, we propose a novel
few-shot learning framework FAITH that captures task correlations via
constructing a hierarchical task graph at different granularities. Then we
further design a loss-based sampling strategy to select tasks with more
correlated classes. Moreover, a task-specific classifier is proposed to utilize
the learned task correlations for few-shot classification. Extensive
experiments on four prevalent few-shot graph classification datasets
demonstrate the superiority of FAITH over other state-of-the-art baselines.
- Abstract(参考訳): 少数ショットグラフ分類はグラフのクラスを予測することを目的としており、各クラスに対して限定ラベル付きグラフが与えられる。
ラベル不足のボトルネックに対処するため、近年の研究では、ラベル付きグラフに制限のあるグラフクラスへの高速適応のための、数発の学習フレームワークの導入が提案されている。
具体的には,多種多様なメタ学習課題にまたがってメタ知識を蓄積し,そのメタ知識を対象タスクに一般化することを提案する。
しかし、既存の手法は一般にメタトレーニングタスク間のタスク相関を無視し、個別に扱う。
それにもかかわらず、そのようなタスク相関はモデル一般化を目標タスクに前進させ、より良い分類性能を得ることができる。
一方,多くのメタ学習タスクにおいて,複雑な構成成分が原因で,タスク相関を利用するのは簡単ではない。
そこで本研究では,異なる粒度で階層的タスクグラフを構築し,タスク相関を捉えた,新しいマイズショット学習フレームワーク信条を提案する。
さらに,クラスに関連付けられたタスクを選択するためのロスベースのサンプリング戦略も設計する。
さらに,学習したタスク相関を数ショットの分類に活用するために,タスク固有分類器を提案する。
一般的な4つのグラフ分類データセットに関する広範囲な実験は、他の最先端のベースラインよりも信頼が優れていることを示している。
関連論文リスト
- Instance-Aware Graph Prompt Learning [71.26108600288308]
本稿では,インスタンス対応グラフプロンプト学習(IA-GPL)について紹介する。
このプロセスでは、軽量アーキテクチャを使用して各インスタンスの中間プロンプトを生成する。
複数のデータセットと設定で実施された実験は、最先端のベースラインと比較して、IA-GPLの優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-11-26T18:38:38Z) - Exploring Correlations of Self-Supervised Tasks for Graphs [6.977921096191354]
本稿では,タスク相関に基づくグラフ自己教師型学習を新たに理解することを目的とする。
我々は,ある特定のタスクによって訓練された他のタスクにおける表現の性能を評価し,タスク相関を定量化するための相関値を定義した。
本稿では,タスク相関を説明するグラフタスク相関モデリング(GraphTCM)を提案する。
論文 参考訳(メタデータ) (2024-05-07T12:02:23Z) - Decoupling Weighing and Selecting for Integrating Multiple Graph
Pre-training Tasks [58.65410800008769]
本稿では、複数のグラフ事前学習タスク、Weigh And Select (WAS)を統合するための新しいインスタンスレベルフレームワークを提案する。
まず、カスタマイズされたインスタンスレベルのタスク重み付け戦略を学習したタスクプールから、各インスタンスのタスクの最適な組み合わせを適応的に学習する。
ノードレベルおよびグラフレベルのダウンストリームタスクにわたる16のグラフデータセットの実験は、WASが他の主要なタスクと同等のパフォーマンスを達成できることを実証した。
論文 参考訳(メタデータ) (2024-03-03T05:29:49Z) - Unsupervised Task Graph Generation from Instructional Video Transcripts [53.54435048879365]
本研究では,実世界の活動を行う指導ビデオのテキスト書き起こしを提供する環境について考察する。
目標は、これらの重要なステップ間の依存関係関係と同様に、タスクに関連する重要なステップを特定することです。
本稿では,命令調整言語モデルの推論能力とクラスタリングとランキングコンポーネントを組み合わせたタスクグラフ生成手法を提案する。
論文 参考訳(メタデータ) (2023-02-17T22:50:08Z) - Graph Few-shot Learning with Task-specific Structures [38.52226241144403]
既存のグラフ数ショット学習手法は一般的にグラフニューラルネットワーク(GNN)を利用する
メタタスクごとにタスク固有の構造を学習する新しいフレームワークを提案する。
このようにして、各メタタスクに適したタスク固有の構造を持つノード表現を学習することができる。
論文 参考訳(メタデータ) (2022-10-21T17:40:21Z) - Association Graph Learning for Multi-Task Classification with Category
Shifts [68.58829338426712]
関連する分類タスクが同じラベル空間を共有し、同時に学習されるマルチタスク分類に焦点を当てる。
我々は、不足クラスのためのタスク間で知識を伝達する関連グラフを学習する。
我々の手法は代表的基準よりも一貫して性能が良い。
論文 参考訳(メタデータ) (2022-10-10T12:37:41Z) - Knowledge-Guided Multi-Label Few-Shot Learning for General Image
Recognition [75.44233392355711]
KGGRフレームワークは、ディープニューラルネットワークと統計ラベル相関の事前知識を利用する。
まず、統計ラベルの共起に基づいて異なるラベルを相関させる構造化知識グラフを構築する。
次に、ラベルセマンティクスを導入し、学習セマンティクス固有の特徴をガイドする。
グラフノードの相互作用を探索するためにグラフ伝搬ネットワークを利用する。
論文 参考訳(メタデータ) (2020-09-20T15:05:29Z) - Adaptive-Step Graph Meta-Learner for Few-Shot Graph Classification [25.883839335786025]
本稿では,グラフデータへの高速適応にGNNをベースとしたグラフメタラーナを用いた新しいフレームワークを提案する。
我々のフレームワークは、ベースラインと比較して、いくつかのショットグラフ分類タスクに対して最先端の結果を得る。
論文 参考訳(メタデータ) (2020-03-18T14:38:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。