論文の概要: Region-Based Merging of Open-Domain Terminological Knowledge
- arxiv url: http://arxiv.org/abs/2205.02660v1
- Date: Thu, 5 May 2022 14:02:44 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-06 15:17:07.633051
- Title: Region-Based Merging of Open-Domain Terminological Knowledge
- Title(参考訳): オープンドメイン用語知識の領域ベースマージ
- Authors: Zied Bouraoui, Sebastien Konieczny, Thanh Ma, Nicolas Schwind, Ivan
Varzinczak
- Abstract要約: Region Connection Calculus (RCC5) は、位相空間内の領域を表現し、それらの集合論的な関係を推論するために用いられる形式主義である。
まず,複数の矛盾する情報源から得られる用語的知識を地域空間に忠実に翻訳することを提案する。
マージはこれらの空間上で行われ、その結果は入力元の基本言語に変換される。
- 参考スコア(独自算出の注目度): 18.32882125046239
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper introduces a novel method for merging open-domain terminological
knowledge. It takes advantage of the Region Connection Calculus (RCC5), a
formalism used to represent regions in a topological space and to reason about
their set-theoretic relationships. To this end, we first propose a faithful
translation of terminological knowledge provided by several and potentially
conflicting sources into region spaces. The merging is then performed on these
spaces, and the result is translated back into the underlying language of the
input sources. Our approach allows us to benefit from the expressivity and the
flexibility of RCC5 while dealing with conflicting knowledge in a principled
way.
- Abstract(参考訳): 本稿では,オープンドメインの用語知識を融合する新しい手法を提案する。
これは、位相空間内の領域を表現し、それらの集合論的な関係を推論するために使われる形式主義である領域接続計算(RCC5)を利用する。
この目的のために,我々はまず,複数の相反する可能性のある情報源から提供される用語学知識を忠実に領域空間に翻訳することを提案する。
マージはこれらの空間上で実行され、その結果は入力元の基礎となる言語に変換される。
我々のアプローチは、矛盾する知識を原則的に扱いながら、RCC5の表現性と柔軟性の恩恵を受けることができます。
関連論文リスト
- Large Language Model with Region-guided Referring and Grounding for CT Report Generation [4.804660464589285]
既存の方法は主にボリューム全体のグローバルな特徴についてのみ考慮する。
我々は,CTレポート生成のための第1の領域誘導参照およびグラウンドディングフレームワークであるReg2RGを提案する。
論文 参考訳(メタデータ) (2024-11-23T12:25:06Z) - Domain Expansion and Boundary Growth for Open-Set Single-Source Domain Generalization [70.02187124865627]
オープンソースの単一ソースドメインの一般化は、単一のソースドメインを使用して、未知のターゲットドメインに一般化可能な堅牢なモデルを学ぶことを目的としている。
本稿では,領域拡大と境界成長に基づく新しい学習手法を提案する。
提案手法は,いくつかの領域横断画像分類データセットにおいて,大幅な改善と最先端性能を実現することができる。
論文 参考訳(メタデータ) (2024-11-05T09:08:46Z) - Non-parametric Contextual Relationship Learning for Semantic Video Object Segmentation [1.4042211166197214]
そこでは,領域の類似性グラフ上に,オブジェクト仮説によって暗示される固有関係をエンコードする,文脈的手がかりの非パラメトリックな例を紹介した。
本アルゴリズムは,学習コンテキストを条件付きランダムフィールド(CRF)にペアポテンシャルの形で統合し,領域ごとのセマンティックラベルを推論する。
提案手法は,YouTube-Objectsデータセットの課題に対して評価を行い,提案手法が最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-07-08T13:22:13Z) - Unveiling A Core Linguistic Region in Large Language Models [49.860260050718516]
本稿では,脳局在化をプロトタイプとして用いた類似研究を行う。
我々は、言語能力に対応する大規模言語モデルにおいて、中核領域を発見した。
我々は,言語能力の向上が必ずしもモデルの知識レベルの向上に伴わないことを観察する。
論文 参考訳(メタデータ) (2023-10-23T13:31:32Z) - Meta-causal Learning for Single Domain Generalization [102.53303707563612]
単一ドメインの一般化は、単一のトレーニングドメイン(ソースドメイン)からモデルを学び、それを複数の未確認テストドメイン(ターゲットドメイン)に適用することを目的としている。
既存の方法は、ターゲットドメインをカバーするためのトレーニングドメインの配布拡大に重点を置いているが、ソースとターゲットドメイン間のドメインシフトを見積もることはできない。
そこで本研究では,まず,対象ドメインとして補助ドメインを構築することによってドメインシフトをシミュレートし,ドメインシフトの原因を解析し,最終的にモデル適応のためのドメインシフトを低減する,新たな学習パラダイムを提案する。
論文 参考訳(メタデータ) (2023-04-07T15:46:38Z) - Investigating the Role of Centering Theory in the Context of Neural
Coreference Resolution Systems [71.57556446474486]
中心化理論と現代のコア参照分解システムとの関係について検討する。
高品質なニューラルコア参照リゾルバは、中心となるアイデアを明示的にモデル化することの恩恵を受けない可能性がある。
また, 再発をモデルとしたCTのバージョンを定式化し, バニラCTよりも良質なコア参照情報を取得することを示した。
論文 参考訳(メタデータ) (2022-10-26T12:55:26Z) - Explainable Supervised Domain Adaptation [5.051036968777244]
本稿では、ドメイン適応フレームワーク XSDA-Net の設計により説明可能であることを提案する。
我々は、XSDA-Netにケースベースの推論機構を統合し、ソースとターゲットの列車画像の類似した領域でテストインスタンスの予測を説明する。
提案フレームワークの有用性を実証的に示すため,提案フレームワークは,部分ベースの説明可能性を示すことが広く知られているデータセット上で,ドメイン適応設定をキュレートする。
論文 参考訳(メタデータ) (2022-05-20T03:33:04Z) - Region-Based Semantic Factorization in GANs [67.90498535507106]
本稿では,任意の画像領域についてGAN(Generative Adversarial Networks)が学習した潜在意味を分解するアルゴリズムを提案する。
適切に定義された一般化されたレイリー商を通して、アノテーションや訓練なしにそのような問題を解く。
様々な最先端のGANモデルに対する実験結果から,本手法の有効性が示された。
論文 参考訳(メタデータ) (2022-02-19T17:46:02Z) - Contextual-Relation Consistent Domain Adaptation for Semantic
Segmentation [44.19436340246248]
本稿では,革新的局所文脈相関整合ドメイン適応手法を提案する。
グローバルレベルのアライメントにおいて、地域レベルのコンピテンシーを達成することを目的としている。
実験では, 最先端手法と比較して, セグメンテーション性能が優れていることを示した。
論文 参考訳(メタデータ) (2020-07-05T19:00:46Z) - LRC-Net: Learning Discriminative Features on Point Clouds by Encoding
Local Region Contexts [65.79931333193016]
本稿では,LRC-Net(Local-Region-Context Network)を提案する。
LRC-Netは、局所領域内および周辺領域間の微粒なコンテキストを同時に符号化する。
その結果, LRC-Netは形状分類や形状分割の応用において最先端の手法と競合することがわかった。
論文 参考訳(メタデータ) (2020-03-18T14:34:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。