論文の概要: Explainable Supervised Domain Adaptation
- arxiv url: http://arxiv.org/abs/2205.09943v2
- Date: Tue, 24 May 2022 07:18:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-25 12:07:54.996354
- Title: Explainable Supervised Domain Adaptation
- Title(参考訳): 説明可能なドメイン適応
- Authors: Vidhya Kamakshi and Narayanan C Krishnan
- Abstract要約: 本稿では、ドメイン適応フレームワーク XSDA-Net の設計により説明可能であることを提案する。
我々は、XSDA-Netにケースベースの推論機構を統合し、ソースとターゲットの列車画像の類似した領域でテストインスタンスの予測を説明する。
提案フレームワークの有用性を実証的に示すため,提案フレームワークは,部分ベースの説明可能性を示すことが広く知られているデータセット上で,ドメイン適応設定をキュレートする。
- 参考スコア(独自算出の注目度): 5.051036968777244
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Domain adaptation techniques have contributed to the success of deep
learning. Leveraging knowledge from an auxiliary source domain for learning in
labeled data-scarce target domain is fundamental to domain adaptation. While
these techniques result in increasing accuracy, the adaptation process,
particularly the knowledge leveraged from the source domain, remains unclear.
This paper proposes an explainable by design supervised domain adaptation
framework - XSDA-Net. We integrate a case-based reasoning mechanism into the
XSDA-Net to explain the prediction of a test instance in terms of
similar-looking regions in the source and target train images. We empirically
demonstrate the utility of the proposed framework by curating the domain
adaptation settings on datasets popularly known to exhibit part-based
explainability.
- Abstract(参考訳): ドメイン適応技術はディープラーニングの成功に貢献した。
ラベル付きデータスカースターゲットドメインで学習するための補助ソースドメインからの知識を活用することは、ドメイン適応の基礎となる。
これらの技術は精度を高めるが、適応プロセス、特にソースドメインから得られる知識はいまだに不明である。
本稿では,設計管理型ドメイン適応フレームワーク xsda-net を提案する。
我々は、XSDA-Netにケースベースの推論機構を統合し、ソースとターゲットの列車画像の類似した領域でテストインスタンスの予測を説明する。
我々は,パートベースの説明可能性を示すために広く知られているデータセットのドメイン適応設定をキュレートすることにより,提案フレームワークの有用性を実証的に実証する。
関連論文リスト
- Adapting to Distribution Shift by Visual Domain Prompt Generation [34.19066857066073]
いくつかのラベルのないデータを使って、テスト時にモデルを適応し、分散シフトに対処する。
ソースドメインから移行可能な知識を学ぶための知識銀行を構築します。
提案手法は,WILDSやDomainNetを含む5つの大規模ベンチマークにおいて,従来よりも優れている。
論文 参考訳(メタデータ) (2024-05-05T02:44:04Z) - Towards Subject Agnostic Affective Emotion Recognition [8.142798657174332]
脳波信号による脳-コンピュータインタフェース(aBCI)の不安定性
本稿では,メタラーニングに基づくメタドメイン適応手法を提案する。
提案手法は,パブリックなaBICsデータセットの実験において有効であることが示されている。
論文 参考訳(メタデータ) (2023-10-20T23:44:34Z) - DARE: Towards Robust Text Explanations in Biomedical and Healthcare
Applications [54.93807822347193]
帰属ロバスト性評価手法を与えられたドメインに適応させ、ドメイン固有の妥当性を考慮する方法を示す。
次に,DAREが特徴とする脆さを軽減するために,対人訓練とFAR訓練の2つの方法を提案する。
最後に,確立した3つのバイオメディカル・ベンチマークを用いて実験を行い,本手法を実証的に検証した。
論文 参考訳(メタデータ) (2023-07-05T08:11:40Z) - Meta-causal Learning for Single Domain Generalization [102.53303707563612]
単一ドメインの一般化は、単一のトレーニングドメイン(ソースドメイン)からモデルを学び、それを複数の未確認テストドメイン(ターゲットドメイン)に適用することを目的としている。
既存の方法は、ターゲットドメインをカバーするためのトレーニングドメインの配布拡大に重点を置いているが、ソースとターゲットドメイン間のドメインシフトを見積もることはできない。
そこで本研究では,まず,対象ドメインとして補助ドメインを構築することによってドメインシフトをシミュレートし,ドメインシフトの原因を解析し,最終的にモデル適応のためのドメインシフトを低減する,新たな学習パラダイムを提案する。
論文 参考訳(メタデータ) (2023-04-07T15:46:38Z) - Domain Adaptation from Scratch [24.612696638386623]
我々は、NLPを機密ドメインに拡張するために欠かせない、新しい学習セットである「スクラッチからのドメイン適応」を提示する。
この設定では、トレーニングされたモデルがセンシティブなターゲットドメイン上でうまく動作するように、ソースドメインの集合からのデータを効率的にアノテートすることを目的としている。
本研究は、データ選択やドメイン適応アルゴリズムからアクティブな学習パラダイムまで、この挑戦的な設定に対するいくつかのアプローチを比較した。
論文 参考訳(メタデータ) (2022-09-02T05:55:09Z) - Domain-Agnostic Prior for Transfer Semantic Segmentation [197.9378107222422]
教師なしドメイン適応(UDA)はコンピュータビジョンコミュニティにおいて重要なトピックである。
ドメインに依存しない事前学習(DAP)を用いてドメイン間表現学習を規則化する機構を提案する。
我々の研究は、UDAがより良いプロキシ、おそらく他のデータモダリティの恩恵を受けていることを明らかにしている。
論文 参考訳(メタデータ) (2022-04-06T09:13:25Z) - f-Domain-Adversarial Learning: Theory and Algorithms [82.97698406515667]
教師なしのドメイン適応は、トレーニング中、ターゲットドメイン内のラベルなしデータにアクセス可能な、多くの機械学習アプリケーションで使用されている。
領域適応のための新しい一般化法を導出し、f-発散体の変分的特徴に基づく分布間の相違性の新しい尺度を利用する。
論文 参考訳(メタデータ) (2021-06-21T18:21:09Z) - Unsupervised Sentiment Analysis by Transferring Multi-source Knowledge [22.880509132587807]
感情分析のための2段階のドメイン適応フレームワークを提案する。
最初の段階では、マルチタスクの方法論に基づく共有プライベートアーキテクチャを使用して、ドメイン共通機能を明示的にモデル化する。
第2段階では、複数のソースドメインから知識を転送するために、共有プライベートアーキテクチャに2つの精巧なメカニズムが組み込まれています。
論文 参考訳(メタデータ) (2021-05-09T03:02:19Z) - Interventional Domain Adaptation [81.0692660794765]
ドメイン適応(DA)は、ソースドメインからターゲットドメインに学習した差別的特徴を転送することを目的としている。
標準的なドメイン不変学習は、素早い相関に悩まされ、ソース固有性を誤って転送する。
ドメイン固有部分とドメイン共有部分とを区別する反ファクト機能を作成します。
論文 参考訳(メタデータ) (2020-11-07T09:53:13Z) - Sequential Domain Adaptation through Elastic Weight Consolidation for
Sentiment Analysis [3.1473798197405944]
我々はSDA(Sequential Domain Adaptation)というモデルに依存しないフレームワークを提案する。
提案手法は,CNNのようなシンプルなアーキテクチャが,感情分析(SA)の領域適応において,複雑な最先端モデルより優れていることを示す。
さらに、ソースドメインのより難しい第1次反計算機的順序付けの有効性が最大性能に繋がることを示した。
論文 参考訳(メタデータ) (2020-07-02T15:21:56Z) - Domain Conditioned Adaptation Network [90.63261870610211]
本稿では,ドメイン条件付きチャネルアテンション機構を用いて,異なる畳み込みチャネルを励起するドメイン条件適応ネットワーク(DCAN)を提案する。
これは、ディープDAネットワークのドメインワイドな畳み込みチャネルアクティベーションを探求する最初の試みである。
論文 参考訳(メタデータ) (2020-05-14T04:23:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。