Finding Bipartite Components in Hypergraphs
- URL: http://arxiv.org/abs/2205.02771v1
- Date: Thu, 5 May 2022 16:46:31 GMT
- Title: Finding Bipartite Components in Hypergraphs
- Authors: Peter Macgregor, He Sun
- Abstract summary: We study a new heat diffusion process in hypergraphs and employ this process to design a new algorithm that finds approximately bipartite components in a hypergraph.
We find that our new algorithm consistently and significantly outperforms the previous state-of-the-art across a wide range of hypergraphs.
- Score: 9.759415650727892
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hypergraphs are important objects to model ternary or higher-order relations
of objects, and have a number of applications in analysing many complex
datasets occurring in practice. In this work we study a new heat diffusion
process in hypergraphs, and employ this process to design a polynomial-time
algorithm that approximately finds bipartite components in a hypergraph. We
theoretically prove the performance of our proposed algorithm, and compare it
against the previous state-of-the-art through extensive experimental analysis
on both synthetic and real-world datasets. We find that our new algorithm
consistently and significantly outperforms the previous state-of-the-art across
a wide range of hypergraphs.
Related papers
- A classification model based on a population of hypergraphs [0.0]
This paper introduces a novel hypergraph classification algorithm.
Hypergraphs explore multi-way interactions of any order.
The algorithm is evaluated on two datasets.
arXiv Detail & Related papers (2024-05-23T21:21:59Z) - Hypergraph Transformer for Semi-Supervised Classification [50.92027313775934]
We propose a novel hypergraph learning framework, HyperGraph Transformer (HyperGT)
HyperGT uses a Transformer-based neural network architecture to effectively consider global correlations among all nodes and hyperedges.
It achieves comprehensive hypergraph representation learning by effectively incorporating global interactions while preserving local connectivity patterns.
arXiv Detail & Related papers (2023-12-18T17:50:52Z) - Hypergraph Isomorphism Computation [20.21325386855039]
We propose a general hypergraph Weisfieler-Lehman kernel framework and implement two instances, which are Hypergraph Weisfeiler-Lehamn Subtree Kernel and Hypergraph Weisfeiler-Lehamn Hyperedge Kernel.
Results on hypergraph classification datasets show significant improvements compared to other typical kernel-based methods.
arXiv Detail & Related papers (2023-07-26T09:39:40Z) - From Hypergraph Energy Functions to Hypergraph Neural Networks [94.88564151540459]
We present an expressive family of parameterized, hypergraph-regularized energy functions.
We then demonstrate how minimizers of these energies effectively serve as node embeddings.
We draw parallels between the proposed bilevel hypergraph optimization, and existing GNN architectures in common use.
arXiv Detail & Related papers (2023-06-16T04:40:59Z) - Tensorized Hypergraph Neural Networks [69.65385474777031]
We propose a novel adjacency-tensor-based textbfTensorized textbfHypergraph textbfNeural textbfNetwork (THNN)
THNN is faithful hypergraph modeling framework through high-order outer product feature passing message.
Results from experiments on two widely used hypergraph datasets for 3-D visual object classification show the model's promising performance.
arXiv Detail & Related papers (2023-06-05T03:26:06Z) - Supervised Hypergraph Reconstruction [3.69853388955692]
Many real-world systems involving high-order interactions are best encoded by hypergraphs.
Their datasets often end up being published or studied only in the form of their projections.
We propose supervised hypergraph reconstruction.
Our approach outperforms all baselines by an order of magnitude in accuracy on hard datasets.
arXiv Detail & Related papers (2022-11-23T23:15:03Z) - Hypergraph Convolutional Networks via Equivalency between Hypergraphs
and Undirected Graphs [59.71134113268709]
We present General Hypergraph Spectral Convolution(GHSC), a general learning framework that can handle EDVW and EIVW hypergraphs.
In this paper, we show that the proposed framework can achieve state-of-the-art performance.
Experiments from various domains including social network analysis, visual objective classification, protein learning demonstrate that the proposed framework can achieve state-of-the-art performance.
arXiv Detail & Related papers (2022-03-31T10:46:47Z) - HyperSF: Spectral Hypergraph Coarsening via Flow-based Local Clustering [9.438207505148947]
We propose an efficient spectral hypergraph coarsening scheme (HyperSF) for preserving the original spectral (structural) properties of hypergraphs.
Our results show that the proposed hypergraph coarsening algorithm can significantly improve the multi-way conductance of hypergraph clustering.
arXiv Detail & Related papers (2021-08-17T22:20:23Z) - Learning Multi-Granular Hypergraphs for Video-Based Person
Re-Identification [110.52328716130022]
Video-based person re-identification (re-ID) is an important research topic in computer vision.
We propose a novel graph-based framework, namely Multi-Granular Hypergraph (MGH) to better representational capabilities.
90.0% top-1 accuracy on MARS is achieved using MGH, outperforming the state-of-the-arts schemes.
arXiv Detail & Related papers (2021-04-30T11:20:02Z) - Learning over Families of Sets -- Hypergraph Representation Learning for
Higher Order Tasks [12.28143554382742]
We develop a hypergraph neural network to learn provably expressive representations of variable sized hyperedges.
We evaluate performance on multiple real-world hypergraph datasets and demonstrate consistent, significant improvement in accuracy, over state-of-the-art models.
arXiv Detail & Related papers (2021-01-19T18:37:50Z) - Online Dense Subgraph Discovery via Blurred-Graph Feedback [87.9850024070244]
We introduce a novel learning problem for dense subgraph discovery.
We first propose a edge-time algorithm that obtains a nearly-optimal solution with high probability.
We then design a more scalable algorithm with a theoretical guarantee.
arXiv Detail & Related papers (2020-06-24T11:37:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.