A classification model based on a population of hypergraphs
- URL: http://arxiv.org/abs/2405.15063v1
- Date: Thu, 23 May 2024 21:21:59 GMT
- Title: A classification model based on a population of hypergraphs
- Authors: Samuel Barton, Adelle Coster, Diane Donovan, James Lefevre,
- Abstract summary: This paper introduces a novel hypergraph classification algorithm.
Hypergraphs explore multi-way interactions of any order.
The algorithm is evaluated on two datasets.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces a novel hypergraph classification algorithm. The use of hypergraphs in this framework has been widely studied. In previous work, hypergraph models are typically constructed using distance or attribute based methods. That is, hyperedges are generated by connecting a set of samples which are within a certain distance or have a common attribute. These methods however, do not often focus on multi-way interactions directly. The algorithm provided in this paper looks to address this problem by constructing hypergraphs which explore multi-way interactions of any order. We also increase the performance and robustness of the algorithm by using a population of hypergraphs. The algorithm is evaluated on two datasets, demonstrating promising performance compared to a generic random forest classification algorithm.
Related papers
- Ensemble Quadratic Assignment Network for Graph Matching [52.20001802006391]
Graph matching is a commonly used technique in computer vision and pattern recognition.
Recent data-driven approaches have improved the graph matching accuracy remarkably.
We propose a graph neural network (GNN) based approach to combine the advantages of data-driven and traditional methods.
arXiv Detail & Related papers (2024-03-11T06:34:05Z) - Hypergraph Isomorphism Computation [20.21325386855039]
We propose a general hypergraph Weisfieler-Lehman kernel framework and implement two instances, which are Hypergraph Weisfeiler-Lehamn Subtree Kernel and Hypergraph Weisfeiler-Lehamn Hyperedge Kernel.
Results on hypergraph classification datasets show significant improvements compared to other typical kernel-based methods.
arXiv Detail & Related papers (2023-07-26T09:39:40Z) - From Hypergraph Energy Functions to Hypergraph Neural Networks [94.88564151540459]
We present an expressive family of parameterized, hypergraph-regularized energy functions.
We then demonstrate how minimizers of these energies effectively serve as node embeddings.
We draw parallels between the proposed bilevel hypergraph optimization, and existing GNN architectures in common use.
arXiv Detail & Related papers (2023-06-16T04:40:59Z) - Tensorized Hypergraph Neural Networks [69.65385474777031]
We propose a novel adjacency-tensor-based textbfTensorized textbfHypergraph textbfNeural textbfNetwork (THNN)
THNN is faithful hypergraph modeling framework through high-order outer product feature passing message.
Results from experiments on two widely used hypergraph datasets for 3-D visual object classification show the model's promising performance.
arXiv Detail & Related papers (2023-06-05T03:26:06Z) - Finding Bipartite Components in Hypergraphs [9.759415650727892]
We study a new heat diffusion process in hypergraphs and employ this process to design a new algorithm that finds approximately bipartite components in a hypergraph.
We find that our new algorithm consistently and significantly outperforms the previous state-of-the-art across a wide range of hypergraphs.
arXiv Detail & Related papers (2022-05-05T16:46:31Z) - Hypergraph Convolutional Networks via Equivalency between Hypergraphs
and Undirected Graphs [59.71134113268709]
We present General Hypergraph Spectral Convolution(GHSC), a general learning framework that can handle EDVW and EIVW hypergraphs.
In this paper, we show that the proposed framework can achieve state-of-the-art performance.
Experiments from various domains including social network analysis, visual objective classification, protein learning demonstrate that the proposed framework can achieve state-of-the-art performance.
arXiv Detail & Related papers (2022-03-31T10:46:47Z) - Love tHy Neighbour: Remeasuring Local Structural Node Similarity in
Hypergraph-Derived Networks [2.246222223318928]
We propose a multitude of hypergraph-oriented similarity scores between node-pairs.
We provide theoretical formulations to extend graph-topology based scores to hypergraphs.
arXiv Detail & Related papers (2021-10-30T14:12:58Z) - HyperSF: Spectral Hypergraph Coarsening via Flow-based Local Clustering [9.438207505148947]
We propose an efficient spectral hypergraph coarsening scheme (HyperSF) for preserving the original spectral (structural) properties of hypergraphs.
Our results show that the proposed hypergraph coarsening algorithm can significantly improve the multi-way conductance of hypergraph clustering.
arXiv Detail & Related papers (2021-08-17T22:20:23Z) - Sketch-Based Anomaly Detection in Streaming Graphs [89.52200264469364]
Given a stream of graph edges from a dynamic graph, how can we assign anomaly scores to edges and subgraphs in an online manner?
Our method is the first streaming approach that incorporates dense subgraph search to detect graph anomalies in constant memory and time.
arXiv Detail & Related papers (2021-06-08T16:10:36Z) - Hypergraph Random Walks, Laplacians, and Clustering [9.488853155989615]
We propose a flexible framework for clustering hypergraph-structured data based on recently proposed random walks.
We show that the proposed methods produce higher-quality clusters and conclude by highlighting avenues for future work.
arXiv Detail & Related papers (2020-06-29T20:58:15Z) - Online Dense Subgraph Discovery via Blurred-Graph Feedback [87.9850024070244]
We introduce a novel learning problem for dense subgraph discovery.
We first propose a edge-time algorithm that obtains a nearly-optimal solution with high probability.
We then design a more scalable algorithm with a theoretical guarantee.
arXiv Detail & Related papers (2020-06-24T11:37:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.