GAN Inversion for Data Augmentation to Improve Colonoscopy Lesion
Classification
- URL: http://arxiv.org/abs/2205.02840v1
- Date: Wed, 4 May 2022 23:15:45 GMT
- Title: GAN Inversion for Data Augmentation to Improve Colonoscopy Lesion
Classification
- Authors: Mayank Golhar, Taylor L. Bobrow, Saowanee Ngamruengphong, Nicholas J.
Durr
- Abstract summary: We show that synthetic colonoscopy images generated by Generative Adversarial Network (GAN) inversion can be used as training data to improve the lesion classification performance of deep learning models.
This approach inverts pairs of images with the same label to a semantically rich & disentangled latent space and manipulates latent representations to produce new synthetic images with the same label.
We also generate realistic-looking synthetic lesion images by interpolating between original training images to increase the variety of lesion shapes in the training dataset.
- Score: 3.0100246737240877
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A major challenge in applying deep learning to medical imaging is the paucity
of annotated data. This study demonstrates that synthetic colonoscopy images
generated by Generative Adversarial Network (GAN) inversion can be used as
training data to improve the lesion classification performance of deep learning
models. This approach inverts pairs of images with the same label to a
semantically rich & disentangled latent space and manipulates latent
representations to produce new synthetic images with the same label. We perform
image modality translation (style transfer) between white light and narrowband
imaging (NBI). We also generate realistic-looking synthetic lesion images by
interpolating between original training images to increase the variety of
lesion shapes in the training dataset. We show that these approaches outperform
comparative colonoscopy data augmentation techniques without the need to
re-train multiple generative models. This approach also leverages information
from datasets that may not have been designed for the specific colonoscopy
downstream task. E.g. using a bowel prep grading dataset for a polyp
classification task. Our experiments show this approach can perform multiple
colonoscopy data augmentations, which improve the downstream polyp
classification performance over baseline and comparison methods by up to 6%.
Related papers
- Local Lesion Generation is Effective for Capsule Endoscopy Image Data Augmentation in a Limited Data Setting [0.0]
We propose and evaluate two local lesion generation approaches to address the challenge of augmenting small medical image datasets.
The first approach employs the Poisson Image Editing algorithm, a classical image processing technique, to create realistic image composites.
The second approach introduces a novel generative method, leveraging a fine-tuned Image Inpainting GAN to synthesize realistic lesions.
arXiv Detail & Related papers (2024-11-05T13:44:25Z) - Additional Look into GAN-based Augmentation for Deep Learning COVID-19
Image Classification [57.1795052451257]
We study the dependence of the GAN-based augmentation performance on dataset size with a focus on small samples.
We train StyleGAN2-ADA with both sets and then, after validating the quality of generated images, we use trained GANs as one of the augmentations approaches in multi-class classification problems.
The GAN-based augmentation approach is found to be comparable with classical augmentation in the case of medium and large datasets but underperforms in the case of smaller datasets.
arXiv Detail & Related papers (2024-01-26T08:28:13Z) - Ulcerative Colitis Mayo Endoscopic Scoring Classification with Active
Learning and Generative Data Augmentation [2.5241576779308335]
Deep learning based methods are effective in automated analysis of these images and can potentially be used to aid medical doctors.
In this paper, we propose a active learning based generative augmentation method.
The method involves generating a large number of synthetic samples by training using a small dataset consisting of real endoscopic images.
arXiv Detail & Related papers (2023-11-10T13:42:21Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
Colonoscopy analysis is essential for assisting clinical diagnosis and treatment.
The scarcity of annotated data limits the effectiveness and generalization of existing methods.
We propose an Adaptive Refinement Semantic Diffusion Model (ArSDM) to generate colonoscopy images that benefit the downstream tasks.
arXiv Detail & Related papers (2023-09-03T07:55:46Z) - Synthetic optical coherence tomography angiographs for detailed retinal
vessel segmentation without human annotations [12.571349114534597]
We present a lightweight simulation of the retinal vascular network based on space colonization for faster and more realistic OCTA synthesis.
We demonstrate the superior segmentation performance of our approach in extensive quantitative and qualitative experiments on three public datasets.
arXiv Detail & Related papers (2023-06-19T14:01:47Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
The biggest challenge in the application of deep learning to the medical domain is the availability of training data.
Data augmentation is a typical methodology used in machine learning when confronted with a limited data set.
In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set.
arXiv Detail & Related papers (2023-04-18T15:39:58Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
Optoacoustic (OA) imaging is based on excitation of biological tissues with nanosecond-duration laser pulses followed by detection of ultrasound waves generated via light-absorption-mediated thermoelastic expansion.
OA imaging features a powerful combination between rich optical contrast and high resolution in deep tissues.
No standardized datasets generated with different types of experimental set-up and associated processing methods are available to facilitate advances in broader applications of OA in clinical settings.
arXiv Detail & Related papers (2022-06-17T08:11:26Z) - METGAN: Generative Tumour Inpainting and Modality Synthesis in Light
Sheet Microscopy [4.872960046536882]
We introduce a novel generative method which leverages real anatomical information to generate realistic image-label pairs of tumours.
We construct a dual-pathway generator, for the anatomical image and label, trained in a cycle-consistent setup, constrained by an independent, pretrained segmentor.
The generated images yield significant quantitative improvement compared to existing methods.
arXiv Detail & Related papers (2021-04-22T11:18:17Z) - Image Translation for Medical Image Generation -- Ischemic Stroke
Lesions [0.0]
Synthetic databases with annotated pathologies could provide the required amounts of training data.
We train different image-to-image translation models to synthesize magnetic resonance images of brain volumes with and without stroke lesions.
We show that for a small database of only 10 or 50 clinical cases, synthetic data augmentation yields significant improvement.
arXiv Detail & Related papers (2020-10-05T09:12:28Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.